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Abstract 
By analysing and expanding upon mathematical reasoning requirements in physics tests, this 
licentiate thesis aims to contribute to the research studying how students’ knowledge in mathematics 
influence their learning of physics. A sample of physics tests from the Swedish National Test Bank in 
Physics was used as data, together with information of upper secondary students’ scores and grades 
on the tests. First it was decided whether the tasks in the tests required mathematical reasoning at all 
and if they did, that reasoning was characterised. Further, the relation between students’ grades and 
mathematical reasoning requirements was examined. Another aim in this thesis is to try out if the 
Mantel-Haenszel procedure is an appropriate statistical method to answer questions about if there is 
a dependence between students’ success on different physics tasks requiring different kinds of 
mathematical reasoning. The results show that 75% of the tasks in the physics tests require 
mathematical reasoning and that it is impossible to pass six out of eight tests without mathematical 
reasoning. It is also revealed that it is uncommon that a student gets a higher grade than Pass 
without solving tasks that require the student to come up with not already familiar solutions. It is 
concluded that the Mantel-Haenszel procedure is sensitive to the number of students each teacher 
accounts for. If there are not too few students, the procedure can be used. The outcome indicates that 
there is a dependence between success on tasks requiring different kinds of reasoning. It is more likely 
that a student manages to solve a task that requires the produce of new reasoning if the student has 
solved a task that is familiar from before. 

Keywords: Mathematical reasoning, imitative reasoning, creative mathematical reasoning, physics 
tests, physics tasks, upper secondary school, Mantel-Haenszel procedure.  
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1 Introduction 
There is a natural relation between the school subjects mathematics and physics, reflected both in 
mathematics education research and in physics education research. Independent of the two fields of 
research, mainly two strands about this relation could be found in the literature. The first strand has 
its focus on how the relation between the subjects is being manifested both in the curricula and in 
practice. The other one is more concerned with how knowledge in one of the subjects may 
contribute to the understanding of the other subject. Some of the discussions depart from the 
learning of mathematics and how the relation to physics could influence this learning, below called 
physics in mathematics. Other studies take a starting point in the learning of physics and discuss 
various aspects of the relation to mathematics, referred to below as mathematics in physics. 
Mathematics is used as the language of physics and knowledge in mathematics is a natural 
prerequisite for learning physics. It follows that some of the difficulties students encounter when 
learning physics likely relate to their ability to use mathematics, an experience shared by many 
physics teachers around the world.  

By studying what kind of and to what extent mathematical reasoning is required to solve tasks in 
physics tests, the aim of this thesis is to contribute to the understanding of students’ success, or lack 
of success, in learning physics. The tests chosen to be analysed come from the Swedish National 
Testbank in Physics. It is further examined if it is possible to say something about the relation 
between how students manage to solve different kinds of tasks, different with respect to 
requirements of mathematical reasoning. This licentiate thesis consists of two papers. The first paper 
describes a qualitative analysis of the mathematical reasoning requirements. The second paper is 
divided in two parts; whereas the first part analyse the relation between students’ grades and which 
tasks they have solved with respect to reasoning category and the second part study if there is a 
relation between how students succeed on tasks requiring different kind of mathematical reasoning. 
By taking a starting point in physics and look at the mathematics required, this thesis best belongs to 
mathematics in physics research. 

2 Background 

2.1 Physics in Mathematics 
Blum and Niss (1991) noticed already in the 80’s that the relation between the two subjects had 
become weakened in the mathematics education. The main reason is that new areas have 
developed, in which mathematics is important, and these areas can provide examples suitable for 
mathematical instructions instead of examples from physics. They agree on the necessity of the 
opening of mathematics instruction to other applicational areas, but at the same time they stress 
that it is of great value to keep a close contact between mathematics and physics in school. Examples 
from physics provide good representative cases for validating mathematical models. They discuss 
how a separation between the two subjects can lead to unnatural distances between the 
mathematical models and the real situation intended to model. The weakened relation between the 
school subjects mathematics and physics is also observed by Michelsen (1998), who describes how 
the separation of the two subjects has evolved in the Danish school. Doorman & Gravemeijer (2008) 
discuss the advantage of learning mathematical concepts through mathematical model building and 
how examples from physics are beneficial to symbolize the concepts. Hanna (2000) and Hanna and 
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Jahnke (2002) propose that it is advantageous to use arguments from physics in mathematical proofs 
to make them more explanatory. They refer to Polya (1954) and Winter (1978) and continue 
discussing the benefits of integrating physics in mathematics education while learning and dealing 
with mathematical proofs. The importance of using physics to facilitate students’ learning of various 
mathematical concepts is also discussed by Marongelle (2004). Using events from physics can help 
students to understand different mathematical representations. 

2.2 Mathematics in Physics 
Tasar (2010) discusses how a closer relation between the school subjects, mathematics and physics, 
can contribute to the understanding of physics concepts. A closer relation might also prevent the 
assumption that students already understand the mathematical concepts needed in physics (ibid.). A 
closer relation, noticed by Basson (2002), might also decrease the amount of time physics teachers 
spend on redoing the mathematics students need in physics. The “redoing” is likely a consequence of 
e.g. that “physics teachers claim that their students do not have the pre-requisite calculus knowledge 
to help them master physics” (Cui, 2006, p.2). Michelsen (2005) discusses how interdisciplinary 
modelling activities can help students to understand how to use mathematics in physics and to see 
the links between the two subjects. Redish and Gupta (2009) emphasize the need to understand how 
mathematics is used in physics and also the cognitive components of expertise, in order to teach 
mathematics for physics more effectively to students. Basson (2002) mentions how learning 
problems in physics not only depends on the complexity of the subject, but also on improper 
mathematical knowledge. Bing (2008) discusses the importance of learning the language of 
mathematics when studying physics. Nguyen and Meltzer (2003) analyse students’ knowledge of 
vectors and conclude that there is a gap between students’ intuitive knowledge and how to apply 
their knowledge in a formal way, which can be an obstacle when learning physics.  

A weaker relation between the subjects, mathematics and physics, in school is also observed more 
recently in Sweden in the Timms Advance 2008 report. A comparison between syllabuses for physics 
from different years revealed that the importance of mathematics in physics was more prominent 
ten years ago, than it is nowadays (Swedish National Agency for Education, 2009). 

In a survey, Tuminaro (2002) classifies studies concerning students’ use of mathematics in four 
categories according to their different approaches. The observational approach focuses on what 
students do when applying mathematics to physics problems and how they reason mathematically. 
Often there are no attempts to give any instructional implications. The modelling approach intends 
to describe the differences between experts and novices regarding their problem solving skills as well 
as to develop computer programs that can model the performance of the novices and the experts. 
Using results from these programs, one hopes to understand the learning process. The third 
approach is called the mathematics knowledge structure approach. Research placed in this category 
aims to explain the use of mathematics from cognitive structures of novices and experts. General 
knowledge structure approach is the last category, which includes research oriented towards an 
understanding of concepts in general (not only mathematical), using various kinds of cognitive 
structures. Tuminaro sees a hierarchical structure in the four approaches and compares this structure 
with a trend in cognitive psychology, towards a refined understanding of cognition. According to 
Tuminaro, the four approaches towards an understanding of how students use mathematics in 
physics do not reach the fully sophisticated level, as the trend in cognitive psychology. Tuminaro 
therefore suggests there still is a need for research about how the structure of students’ knowledge 
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coordinates when they draw conclusions about physics from mathematics. Since a part of the 
presented thesis focuses on what kind of mathematical reasoning that are required of students and 
not on students’ use of mathematics, the thesis can be regarded as a complement to the studies 
categorised by Tuminaro.   

2.3 Service subject  
In some studies concerning the relation between mathematics and physics, the concept service 
subject emerges. It is though not always clear what is intended with this concept and therefore a very 
brief review of found definitions/descriptions follows. Howson (1988) describes mathematics as a 
service subject when mathematics is needed as a complement in other major subjects the students 
are studying e.g. physics. He stresses that this does not “imply some inferior form of mathematics or 
mathematics limited to particular fields” (ibid. p. 1). Blum & Niss (1991) observe that focusing on 
mathematics as a service subject and on co-operation between mathematics and other subjects has 
been treated separately in the education. They discuss different kinds of mathematical modelling and 
conclude that for physics situations, mathematics is primarily used to describe and explain the 
phenomena. This use is different from how mathematics is used in models for e.g. economic cases, in 
which norms are established by value judgements. Niss (1993) discusses different aspects of 
mathematics, one of which is mathematics as an applied science. In this shape, mathematics can 
serve as a service subject and provide help to understand phenomena in e.g. physics.  

3 The Swedish upper secondary school  

3.1 The national curriculum  
The upper secondary school in Sweden is governed by the state through the curriculum, the 
programme objectives and the syllabuses. In the curriculum are laid down the fundamental values 
that are to permeate the school's activities and also the goals and guidelines that are to be applied. 
The syllabuses, on the other hand, detail the aims and objectives of each specific course. They also 
indicate what knowledge and skills students must have acquired on completion of the various 
courses.  

In the curriculum it is stated that the school should aim to ensure that students acquire good 
knowledge in the various courses that together constitute their study programme and that they can 
use this knowledge as a tool for example; to formulate and test assumptions and to solve practical 
problems and work tasks.  It is the responsibility of the school to ensure that students, after they 
have finished school, can formulate, analyse and solve mathematical problems of importance for 
vocational and everyday life (Lpf94, 2006, p. 10 - 12). Upper secondary school in Sweden is divided 
into different national programmes; different specially designed programmes and programmes 
provided at independent schools. A special designed programme could be considered similar to a 
national programme, and programmes at an independent school could be approved as one of the 
national programme. Two of the national programmes, the Natural Science Programme (NV) and the 
Technology Programme (TE), are oriented towards science and include higher courses in 
mathematics and courses in physics. About 12% of all students in the upper secondary school in 
Sweden attend the Natural Science Programme or the Technology Programme (Swedish National 
Agency for Education, 2011).  
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According to the programme objectives (Swedish National Agency for Education, 2001), NV aims at 
developing the ability to use mathematics in the natural science and in other areas. It is also stated in 
the programme objective for NV that in order to develop concepts, students need an understanding 
of the inter-relationships within and between subjects. The importance of information technology 
(IT) in for example mathematics and science is outlined in the programme objective for TE. 
Therefore, one responsibility for TE is to give the students opportunity to attain familiarity with using 
computers as a tool and to use IT for learning and communication. The different courses in each 
program are chosen to fulfil the aims in the different programme objectives. Courses in a school 
subject are labelled with capital letters, starting with A for the first course and B for the succeeding 
course and so on. For all students in NV, Mathematics A to D and Physics A are compulsory courses. 
For students in TE, Mathematics A to C and Physics A are compulsory. In each of the programmes 
students can choose between different branches. NV has three branches and TE has five. For the 
branch Natural Science for NV (NVNA), Physics B is compulsory and for the branch Mathematics and 
Computer Science (NVMD), Mathematics E is compulsory. Both Physics B and Mathematics E must be 
offered as optional courses to all students in NV regardless their choice of branch. None of the 
branches for TE includes requirements of more courses in mathematics or physics, but Physics B and 
Mathematics D to E must be provided the students as optional (ibid.).  

3.2 Syllabuses  
Mathematics is one of the core subjects In Swedish upper secondary school, together with e.g. 
English, religion and social science, and Mathematics A is compulsory to all students. This importance 
of mathematics is expressed in the syllabuses for mathematics –a core subject– as e.g. “The school in 
its teaching of mathematics should aim to ensure that pupils: develop confidence in their own ability 
to … use mathematics in different situations, …, develop their ability with the help of mathematics to 
solve … problems of importance in their chosen study orientation” (Swedish national Agency for 
Education, 2001, p.112).  In addition to core subjects there are programme-specific subjects, as for 
example physics for NV and TE. According to the syllabus in physics, some of the aims are to: 
“develop [students’] ability to quantitatively and qualitatively describe, analyse and interpret the 
phenomena and processes of physics in everyday reality, nature, society and vocational life”, …,” 
develop [students’] ability with the help of modern technical aids to compile and analyse data, as well 
as simulate the phenomena and processes of physics” (Swedish National Agency for Education, 
2000c).  

Explicitly, mathematics is important when making quantitative descriptions and implicitly, when 
analysing data, although the analysing part is mentioned in relation to technical aids. In the 
syllabuses for the various courses Physics A and Physics B, mathematics is mentioned more explicitly. 
In Physics A, the students should be able to make simple calculations using physical models (Swedish 
National Agency for Education, 2000a). In Physics B there is more than one aim that includes 
mathematics. The student should be able to handle physical problems mathematically. They should 
also be able to make calculations in nuclear physics using the concepts of atomic masses and binding 
energy (Swedish National Agency for Education, 2000b). Physics B has Physics A as a prerequisite and 
the students should attain a deeper understanding for some of the physical concepts when studying 
Physics B. It is also explicated that there are higher demands on the mathematical processing in 
Physics B (Swedish National Agency for Education, 2000c). Besides the aims are also the 
requirements for the grades in each course stated in the different syllabuses. The final grades 
students are awarded after the courses depend on the achieved level of proficiency (Swedish 
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National Agency for Education, 2000a, 2000b). The grades vary between Not Pass (IG), Pass (G), Pass 
with distinction (VG) and Pass with special distinction (MVG). The descriptions of the different grade 
levels are quite vague and the intention is that the syllabuses should be processed and interpreted 
locally at the schools. 

3.3 Physics tests from the National Test Bank 
To accomplish equivalent assessment in physics, assessment supports are provided by the Swedish 
National Agency of Education. One of these supports is the National Test Bank in Physics. In this 
respect the tests can be considered as a governmental concretisation of the syllabuses for physics. 
The character and the design of the tasks in tests stress what is covered in the taught curriculum as 
well as teachers’ interpretation of the syllabuses, and by extension what students focus on (Ministry 
of Education and Research, 2001; Swedish National Agency for Education, 2003). The test material in 
the National Test Bank for Physics is developed by the Department of Applied Educational Science at 
Umeå University, who has had this commission since shortly after the new national curriculum was 
implemented in 1994. Most of the material provided by the test bank is not open to public, only to 
teachers in physics at upper secondary school. In total there are so far 847 tasks to choose from 
besides 16 complete tests for each of the courses Physics A and Physics B. The first tests are from 
1998 and the latest is from spring 2011. In addition, there are five tests for each course open for 
students (or anyone interested) to practice on. In this way the students get an idea of what the tests 
looks like and what is required when taking a test. (Department of Applied Educational Science, 
2011). There might be a difference between the national tests and teacher made tests; this is not 
investigated in this thesis. 

The provided tests are constituted of two parts; the first part consists of tasks for which a short 
answer is enough as a solution and the second part consists of tasks that require more analysing 
answers. For the last ten years, the final task in the tests is an aspect-task. The task should be easy to 
start with, but it should also include challenge to more proficient students.  These aspect-tasks are 
corrected according to an assessment matrix, with scores according to achieved qualitative level for 
the different aspects, e.g. the use of concepts and models, the use of physics reasoning, and the 
accounting for the answer. The first three years, 1998-2000, it was an experimental part included in 
the tests; this part is not included in the analysis in this thesis. A part of the assessment support is 
that scoring rubrics are provided to the teachers with each test. The guidance in these rubrics has 
changed some over the years. In the more recent rubrics are e.g. more examples of acceptable 
answers outlined. Furthermore, the criteria for the highest grade were not explicated in the scoring 
rubrics for the earliest tests.  

As opposed to national tests in for example mathematics, the teachers are not obligated to use the 
tests from the National Test Bank. However a majority of all registered teachers uses the provided 
physics tests as a final exam in the end of the physics courses (Swedish National Agency for 
Education, 2005). It is important to stress that National tests, although students must take them in 
for example mathematics, are not high-stake test. The final grade in a course is not solitarily 
dependent on the achievement on the national test. In fact, teachers are not allowed to grade a 
course only on a single test, they have to account for all the various aspects the student has shown 
his/her knowledge in during the entire course. After a test from the Test Bank is used, the teachers 
are intended to report back students’ results on the test to the Test Bank. 
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This thorough description of the National Test Bank tests’ purpose and their influence on the physics 
education hopefully clarifies and motivates the choice to use these tests as an indicator of what are 
required mathematically from upper secondary students while studying physics.   

4 Conceptual framework 

4.1 Mathematical problem solving 
The conceptual framework used in this thesis is related to the various phases of problem solving 
(Lithner, 2008). Problem solving is used in various contexts with different meanings. Solving 
mathematical problems can include everything between finding answers to already familiar tasks and 
trying to proof new theorems. In this thesis problem implies when an individual does not have easy 
access to a solution algorithm (Schoenfeld, 1985). The term task on the other hand comprises most 
work students are involved in during class and while doing homework (Lithner, 2008), which in this 
thesis narrows down to the work students do while taking a physics test. Different advantages of 
working with mathematical problem solving in school are that students’ ability to reason 
mathematically improves, their problem solving skills develop and they become more prepared for 
life outside school, compared to not working with problem solving (Lesh & Zawojewski, 2007, 
Schoenfeld, 1985; Wyndham et al., 2000;). Learning mathematics through problem solving can also 
help students to develop their mathematical thinking and their skills in reason mathematically in 
other areas than pure mathematics, for example physics, (Blum & Niss, 1991).  
 

4.2 Mathematical reasoning 
The impact of mathematical reasoning on mathematical learning has been discussed and studied 
from multiple perspectives. Schoenfeld (1992), for example, points out that a focus on rote 
mechanical skills leads to bad performance in problem solving. Lesh & Zawojeskij (2007) discuss how 
emphasising on low-level skills does not give the students the abilities needed for mathematical 
modelling or problem solving, neither to draw upon interdisciplinary knowledge. Lithner (2008) 
refers to his studies of how rote thinking is a main factor behind learning difficulties in mathematics. 
The definition of mathematical reasoning and the conceptual framework that is used for the analyses 
in this thesis are developed by Lithner (2008) through his empirical studies of how students are 
engaging in various kinds of mathematical activities. As a result, reasoning as ”the line of thought 
adopted to produce assertions and reach conclusions in task solving” was defined (p. 257 ibid.). 
Reasoning is considered as a product of all reasoning sequences required to reach an answer (ibid.). 
Each sequence includes a choice that defines the next sequence and the reason is the justification for 
the choice made (Ball & Bass, 2003).  

Just as problem solving, mathematical reasoning is a term that is used with different meanings in 
various contexts (Yackel & Hanna, 2003). For some scholars, mathematical reasoning is used as a 
synonym for a strict mathematical proof (e.g. Duval, 2002; Harel, 2006); others talk about pre-
axiomatic reasoning e.g. Leng (2010). The NCTM (2000) distinguishes between mathematical 
reasoning and mathematical proofs when setting the standards for school mathematics. Ball and 
Bass (2003) equate mathematical reasoning with a mathematical ability every student need in order 
to understand mathematics. In this thesis, to be considered as mathematical reasoning the 
justifications for the different reasoning sequences should be anchored in mathematical properties 
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and mathematical reasoning is used as an extension of a strict mathematical proof (Lithner, 2008). 
When reasoning, one starts with an object, a fundamental entity that can be a function; an 
expression; a diagram etc. To this object, a transformation is done and another object is acquired. A 
series of transformations performed to an object is called a procedure (ibid.). The mathematical 
properties of an object are of different relevancy in different contexts e.g. what kind of task one is 
trying to solve. This leads to a distinction between surface properties and intrinsic properties, where 
the former ones have little relevance in the actual context and the latter ones are central and have to 
be regarded. How the student makes and motivates the choices in the reasoning sequences is 
dependent on what resources he/she has access to. Schoenfeld (1985) defines the term resources as 
the tools; e.g. mathematical knowledge; the student has access to when solving a task. The 
justification for a choice does not have to be mathematical correct, but it has to be a plausible 
argument. This means that there is some logic to why a guess would be more reasonable, form a 
mathematical point of view, than another guess (Polya, 1954).  Depending on whether the reasoning 
is based on surface properties, superficial reasoning, or intrinsic properties, intrinsic reasoning, the 
framework distinguishes between imitative and creative mathematical founded reasoning. 

One example, described in Bergqvist, Lithner and Sumpter  (2008), of when only surface properties 
are considered, is a student who tries to solve a max-min problem: “Find the largest and the smallest 
values of the function y = 7 + 3x – x2 on the interval [-1, 5]”.  This task can be solved with a 
straightforward solution procedure:  One first uses that the function is differentiable on the whole 
interval to find all possible extreme points in the interval, (i.e. solve f´(x) = 0). If there are extreme 
points, the values at these points are calculated and compared with the values at the endpoints. In 
the situation described, the student does not remember the whole procedure, but reacts on the 
words largest and smallest and starts differentiating the function and solves f´(x) = 0. This calculation 
only gives one value and the answer demands two. Instead of considering intrinsic mathematical 
properties, the student seeks a method that will provide two values and instead solves the second 
degree equation 7 + 3x – x2 = 0. Two points are now obtained and the function values at these points 
are accepted as the solution by the student. Although the student gives these values as an answer, it 
is with some hesitation because the method used did not involve any differentiation, something 
remembered by the student to be related to a max-min problem. 

4.3 Creative mathematical founded reasoning 
Creativity is another term that is used in various contexts and without an unequivocal definition, just 
as problem solving and mathematical reasoning are. There are though mainly two different use of 
the term: one where creativity is seen as a thinking process which is divergent and overcomes 
fixation; and another one, where creativity is used when the result is a product that is ascribed great 
importance to a group of people (Haylock, 1997). Regardless of context, there are two main 
components that can be crystalized when discussing creativity; these are the usefulness and novelty 
(Franken, 2002; Niu & Sternberg, 2006).   

When creativity is discussed in a mathematical context, it has often been an ability ascribed to 
experts (Silver, 1997). A quantitative study by Kim (2005) shows a nominal correlation between 
students’ creativity and their scores on IQ-tests, a result supporting the view of not ascribing 
creativity only to experts or “genius”. In a study by Schoenfeld (1985), where he compares novices’ 
problem solving abilities with experts’, he concludes that professional mathematicians succeed 
because of their different way from students of tackling a mathematical problem.  These are abilities 
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that can be developed and improved by the students (ibid.). Silver (1997) makes a similar conclusion 
in his paper when he discusses the value for educators in mathematics of changing their view of 
creativity from professional mathematicians’ skills, to a mathematical activity every student can 
improve in school. Sriraman (2009, p.15) makes a definition of mathematical creativity “as the 
process that results in unusual and insightful solutions to a given problem, irrespective of the level of 
complexity”.  

In the framework used in this thesis, the creativity perspective from Haylock (1997) and Silver (1997) 
is adopted. That means that creativity is seen as a thinking process that is novel, flexible and fluent. 
The flexibility indicates that the students have overcome fixation behaviours at some level. The two 
types of fixation that are intended are content universe fixation, which limits the range of elements 
that are seen as useful; and algorithmic fixation, which concerns the repeated use of an algorithm 
once successful (Haylock, 1997).  

Creative mathematical founded reasoning (CR)1 fulfils all of the following criteria. (Lithner, 2008, 
p.266) 

i. Novelty. A new (to the reasoner) reasoning sequence is created or a forgotten one is 
recreated.  

ii. Plausibility. There are arguments supporting the strategy choice and/or strategy 
implementation motivating why the conclusions are true or plausible.  

iii. Mathematical foundation. The arguments are anchored in intrinsic mathematical properties 
of the components involved in the reasoning. 

4.4 Imitative reasoning 
The other kind of reasoning used is imitative reasoning (IR). The difference between imitative and 
creative mathematical reasoning, is that there is no flexibility in the thinking process.  There are no 
new reasoning sequences created and the arguments, that motivate the chosen solution method, 
could be anchored in surface mathematical properties. The reasoner just uses a solution procedure 
that seems to fit that kind of task. Imitative reasoning is distinguished into memorised reasoning and 
algorithmic reasoning. When it is enough just to recall an answer to be able to solve a task, this is 
regarded as memorised reasoning, for example the proof of a theorem.  

Memorised reasoning (MR) fulfils the following conditions (Lithner, 2008, p. 258)  

i. The strategy choice is founded on recalling a complete answer. 
ii. The strategy implementation consists only of writing it down. 

If some kind of calculations is required to solve the task, there is often no use in remembering an 
answer. Instead it is more suitable to recall an algorithm. Algorithm is here used in a wide sense and 
refers to all the procedures and rules that are needed to reach the conclusion to a specific type of 
tasks, not only the calculations.  

 

 

 
1 Henceforward called mathematical reasoning 
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Algorithmic reasoning (AR) fulfils the following conditions (Lithner, 2008, p.259) 

i. The strategy choice is to recall a solution algorithm, which if it is followed step by step will 
give the right answer without any demands of novelty.  

ii. The remaining parts of the strategy implementation are trivial for the reasoner and just a 
careless mistake can obstruct the reaching of an answer. 

AR is subdivided into three different categories, depending on how the proper algorithm is argued 
for. The categories are familiar algorithmic reasoning, delimiting algorithmic reasoning and guided 
algorithmic reasoning. In this thesis/licentiate, only the categories familiar algorithmic reasoning and 
guided algorithmic reasoning are used during the analysis of the tests.   

Familiar AR (FAR) fulfils the following conditions (p. 262 ibid.) 

i. The reason for the strategy choice is that the task is identified as belonging to a familiar class 
of tasks which are known to be solved by a specific algorithm. 

ii. The algorithm is implemented. 

If the reasoner does not recall any algorithm or is not able to delimit any from the known ones, there 
can be a need for guidance from an external source to perform the reasoning. The guidance can 
either be text-guided, e.g. when following an example in the text book that look similar on the 
surface, or person-guided when for instance the teacher tells every step in the reasoning sequence 
that has to be made to fulfil the reasoning, without discussing any intrinsic-based mathematical 
arguments for the choices.  

Text- guided AR (GAR) fulfils (ibid. p.263) 

i. The strategy choice concerns identifying surface similarities between the task and an 
example, definition, theorem, rule or some other situation in a text source. 

ii. The algorithm is implemented without verificative argumentation.  

4.5 Local and global creative mathematical reasoning 
Lithner (2008) introduces a refinement of the category CR into local CR (LCR) and global CR (GCR) 
that captures some significant differences between tasks categorised as LCR and GCR. This 
differentiation has been more elaborated by other scholars that have used the framework e.g. 
Boesen, Lithner and Palm (2010) and Palm, Boesen and Lithner (2011). The difference between LCR 
and GCR is that in LCR, the reasoning is mainly MR or AR but contains a minor step that requires CR. 
If instead there is a need for CR in several steps, it is called GCR, even when some parts contain AR 
and/or MR. Important to stress is that as soon as CR is involved there has to be some understanding 
of the intrinsic mathematical properties in the task.  

4.6 Non-mathematical reasoning 
In the application of the framework for the analyses described in this thesis, an additional category is 
defined. This category consists of those tasks that can be solved by only using physics knowledge; 
and this category is called non-mathematical reasoning (NMR). Physics knowledge is here referred to 
as relations and facts that are discussed in the physics courses and not in the courses for 
mathematics, according to the syllabuses and textbooks, e.g. that angle of incidence equals angle of 
reflection. In the same way, a solution that requires mathematical reasoning refers to mathematics 
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taught in courses at upper secondary school or assumed already to be known by the students 
according to the curricula. 

 

 

 Figure 1. Overview of the conceptual framework. 

5 Research related to the framework 

5.1 Rote learning, procedural knowledge and imitative reasoning 
Although imitative reasoning, AR and MR, refers to the kind of knowledge that is learned by 
heart/rote and that studies have shown that rote learning contributes to learning difficulties, this 
study does not imply that students should not learn algorithms. Sfard (1991) discuss how operational 
and structural knowledge are complementary, and that one of them cannot exist without the other. 
A three stage hierarchical model is presented and it is stated that before a concept is fully 
understood, the student has to learn processes/operations that are related to the concept (ibid.). I.e. 
it is necessary to learn some algorithms in order to achieve a deeper mathematical understanding, 
but it is not enough. In the paper of Gray and Tall (1994), the dichotomy between procedures and 
concepts is discussed and they introduce a new word “procept”, referring to both the concept and 
the process that are represented by the same symbol.  Although there is an agreement that 
procedural knowledge is important, it is not enough when students learn mathematics (Baroody, Feil 
& Johnson, 2007; Gray & Tall, 1994; Sfard, 1991; Star, 2007). Further there is an argumentation about 
whether deep procedural knowledge can exist without involvement of conceptual knowledge 
(Baroody, Feil & Johnson 2007; Star, 2005, 2007).  To be successful in mathematics it is necessary for 
the students to do proceptual thinking, which includes the use of procedures. But as Grey and Tall 
(1994) stress, the proceptual thinking is also flexible i.e. it includes the capacity to view the symbols 
as a procedure or a mental object depending on the situation. The definitions of the different 
subcategories of imitative reasoning accounted for above include no such thing as flexibility. On the 
contrary, the reasoning could be very fixated.  
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5.2 Physics reasoning 
Since mathematical reasoning in physics tasks is the focus in this thesis, it seems natural to include a 
brief review of how scholars discuss reasoning in physics; and descriptions of the most commonly 
used concepts. diSessa (1993) uses the term p-primes to describe people’s sense of physical 
mechanism. P-primes are described as small knowledge structures that in some cases are self-
explanatory i.e. things happen because that is the way they are. The p-primes originate from the 
students’ experiences of the real world. Through learning, appropriate p-primes are activated in 
relevant situations and new ones can be generated. The function of a p-prime as self-explanatory, 
also change during learning, as it must be consistent with the physics laws. P-primes are neither 
wrong nor right in themselves, in some circumstances they are correct and in others not. In this 
respect, p-primes can be used both when studying reasoning about unproblematic situations and 
problematic situations. This is different from using the concept misconception, then only wrongly 
understood situations can be analysed (ibid.).   

Bliss (2008) accounts for studies, conducted by Joan Bliss, Jon Ogborn and others from a period of 
twenty years, about how students use common sense reasoning to explain/describe physical 
phenomena. Common sense reasoning refers to when students use experiences from everyday life in 
their reasoning and is explained as “It is the type of reasoning we use to make sense of what is 
happening around us, or what may have happened, or what will happen” (ibid. p.126). One of the 
results of the studies in Bliss (2008) was that concrete physical schemes are developed through the 
interaction with real world experience. These schemes are combined to mental models and used 
when one is trying to understand or predict different physical events i.e. reasoning about physics.  

Another concept used for reasoning about physics situations is qualitative reasoning or qualitative 
physics (Forbus, 1981, 2004). This concept is mainly used for an area of artificial intelligence (AI) that 
is modelling the world, (from a scientific perspective), using the intuitive notions of human mental 
models instead of mathematical models. The origin of qualitative reasoning is peoples intuitively 
reasoning about the physical world, i.e. their common sense reasoning (Klenk et al 2005). Qualitative 
reasoning seems also being used by physicists when first trying to understand a problem and later 
when interpreting quantitative results (Forbus, 2004). 

Wittmann (2002) introduce the concept pattern of association when discussing reasoning in physics. 
This refers to the linked set of reasoning resources brought by a student to some specific situation. 
Some of the resources can be described by diSessa’s (1993) concept p-primes. How these resources 
are organised when explaining a physics situation is what distinguishes novices from experts, not the 
existence of the resources (ibid.).  

6 Aims and research questions 
The literature accounted for above shows that there are several studies in educational research 
about the relations between the school subjects mathematics and physics. The importance of 
mathematics and the effects the use of mathematics may have when learning physics is a common 
share. The review also shows that how students reason mathematically affect their learning in 
mathematics. If students only look for superficial properties when they are solving a mathematical 
task, i.e. using imitative reasoning, it is more likely they end up not understanding the underlying 
mathematical concepts. Focusing on surface properties is a kind of rote-mechanical procedure that 
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contributes to poorer performance in mathematical problem solving. At the same time skills in 
mathematical problem solving is considered to have a positive effect on the abilities to reason 
mathematically in other areas than mathematics.  

From the previous discussion it is likely to assume that students will not understand the underlying 
mathematical concepts and the mathematical models the concepts are used to illustrate if they are 
focusing on imitative reasoning when solving physics tasks. Because the mathematical models 
express the physics used for describing what and why events happen in the world around us, a lack 
of understanding of the mathematics likely affects the understanding of the physics and then also 
students’ learning of physics. The conducted studies in this thesis are based on the assumption that 
students’ ability to reason mathematically when solving tasks in physics has an impact on their 
learning of physics, as it has on their learning of mathematics.  

It seems that the mathematical reasoning required by students when they are solving physics tasks is 
not as well researched as the reasoning students use in physics classes. By analysing the 
mathematical reasoning demands students are confronted when taking physics tests, as well as the 
relation between types of tasks student solves and their grades, this thesis attempts to contribute to 
research of how mathematical reasoning may affect students’ learning of physics. The aim is 
specified in the following research questions: 

 What is the character of the mathematical reasoning that is required of students in upper 
secondary school to solve the tasks in physics tests from the Swedish national test bank? 

 Is it possible for a student to get one of the higher grades without using creative 
mathematical reasoning and if it is how common is it?   

 Does a student’s success on tasks categorised as requiring creative mathematical reasoning 
depend on the student’s success on tasks requiring imitative reasoning? 

As mentioned in the introduction, this thesis consists of two papers. Paper I deals with the first of the 
questions and Paper II with the other two. To answer the last question an appropriate method is 
needed. Therefore, Paper II also serves as a pilot, to see if the Mantel-Haenszel procedure is a 
suitable quantitative method to answer questions about the dependence between students’ success 
on the different kinds of tasks. If the model works out well it could be used for further analyses of 
relation between IR and CR on mathematics tests that have been categorised according to Lithner’s 
(2008) framework in previous studies. 

According to the above discussion about similarities between IR – procedural knowledge and CR – 
conceptual knowledge, the answer to the third question may also shed some light on the relation 
between procedural and conceptual knowledge. 

7 Methods 
For the analysis in Paper I, ten tests were randomly chosen from the available ones in the National 
Test Bank, five from each course Physics A and Physics B respective.  Results from eight of these ten 
tests were used for the analysis in Paper II.  
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7.1 Categorisation of Mathematical Reasoning requirements 
The objects of study were the mathematical reasoning required from students to solve the tasks in 
the physics tests from the National Test Bank. No students with their actual solutions were included 
in the study. Required reasoning refers to what kind of reasoning that is sufficient to solve a task, and 
the chosen framework gives the possibility to determine this. Whether the solution to a task requires 
creative mathematical reasoning or imitative reasoning depends on whether the solution requires 
some novelty. In order for a task to be categorised as requiring algorithmic reasoning or memorised 
reasoning, the student should be able to recognize the type of task. This in turn depends on the 
education history of the solver. According to studies of how the education in physics and 
mathematics are organised, a major part of the learning activities seem to be controlled by the 
textbooks in respective subject (Engström, 2011; Swedish National Agency for Education, 2003 & 
2009; Swedish Schools Inspectorate, 2010; Ministry of Education and Research, 2001). A description 
of the references’ respective findings can be found in Paper I. The learning history of an average 
student is in this thesis therefore reduced to the content in the textbooks. Both textbooks in 
mathematics and physics were considered. Since students are allowed to use a physics handbook 
during a physics test, the access to formulas and definitions in this handbook also has to be taken 
into account when analysing the tasks. The textbooks and the handbook were chosen among the 
books commonly used in the physics courses in upper secondary school. Even if not all students in 
the Swedish upper secondary school are using the books above, it is a reasonable assumption of the 
learning situation for a conceivable student. The following textbooks were used in the analysis of the 
mathematical reasoning requirements; “Ergo Fysik A” and “Ergo Fysik B” (Pålsgård, Kvist & Nilsson, 
2005a, 2005b); “Matematik 3000 Kurs A och B” and “Matematik 3000 Kurs C och D” (Björk & Brolin, 
2001, 206) as well as ”Tabeller och formler för NV- och TE- programmen” (Ekbom et al., 2004). 

The procedure for analysing the tasks is given by the chosen framework and an analysis sheet was 
used to structure the procedure. The steps comprised in the procedure are outlined below and are 
used earlier in e.g. Palm et al. (2011).  

I. Analysis of the assessment task – Answers and solutions 
a) Identification of the answers (for MR) or algorithms (for AR) 
b) Identification of the mathematical subject area 
c) Identification of the real life event 
 

II. Analysis of the assessment task – Task variables 
1. Assignment 
2. Explicit information about the situation 
3. Representation 
4. Other key features 

 
III. Analysis of the textbooks and handbook – Answers and solutions 

a) In exercises and examples 
b) In the theory text 

 
IV. Argumentation for the requirement of reasoning 

Below follows a thoroughly description of the steps in the procedure 
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I. Analysis of the assessment task – Answers and solutions: When analysing the different 
assessment tasks with respect to answers and solutions, first, a solution plausible to think a student 
would use was constructed by the researcher and written down. The solution was then looked at 
with mathematical glasses on and categorised according to relevant mathematical subject areas for 
the solution.  For instance: does the solution include working with formulas, algebra, diagrams, 
solving equations, etc. Solutions not including any mathematical object were identified in this step 
and these tasks were categorised as non-mathematical reasoning (NMR) i.e. tasks solvable without 
any mathematical considerations. As a consequence of the added category NMR, this step is an 
addition to the original procedure used in previous studies. Mathematical objects refer to entities to 
which mathematics is applied. As mentioned above, here mathematics refers to school mathematics 
introduced in mathematics courses given for students at upper secondary school or mathematics 
assumed already to be known according to the curricula. Identification of a “real-life” event, refers to 
tasks where the described situation could give a clue to a known algorithm that solves the problem.  

II. Analysis of the assessment task – Task variables: After identification, the next step in the 
procedure was to analyse the solution according to the different task variables. The first variable is 
the explicit formulation of the assignment. The second variable is what information about the 
mathematical objects that were given explicitly in the information, contrary to what information the 
students for example need to retrieve from the handbook or have to assume in order to reach a 
solution. The third task variable concerns how the information was given in the task, e.g. numerically 
or graphically, interwoven in the text or explicitly given afterwards. This is called representation in 
the procedure, step II.3. The task can also include key words, symbols, figures, diagrams or other 
important hints the student can use to identify the task type and which algorithm to use. These 
features are gathered in the fourth task variable.  

III. Analysis of the textbooks and handbook – Answers and solutions: The third step in the analysis 
process focuses on the textbooks and the handbook. Formulas used in the solution algorithm were 
looked for in the handbook and the available definitions were compared to the constructed solution 
of the task. The textbooks were thoroughly looked through for similar examples or exercises that 
were solved by a similar algorithm, as well as whether the theory text contained a description of how 
similar or identical problems could be solved. 

IV. Argumentation for the requirement of reasoning: To motivate the concluded reasoning 
requirement, an argumentation based on the previous steps was made for every task. The 
considerations are if it is possible for a student to solve the task using a reasoning type based only on 
superficial mathematical properties or if it is necessary to use creative mathematical reasoning. In 
order to be categorised as familiar algorithmic reasoning there must have been at least three tasks 
considered as similar in the textbooks. If the task is similar to a formula or definition given in the 
handbook, it is assumed that the student can use this as guidance in order to solve the task. It is then 
enough with only one similar, previously encountered, example or exercise for the task to be 
regarded requiring text-guided algorithmic reasoning. To be categorised as requiring memorised 
reasoning, tasks including the same answer or solution should have been encountered at least three 
times in the textbooks. If none of the above reasoning types are sufficient for solving the task and 
there is a need to consider some intrinsic mathematical property, the task is categorised to require 
some kind of creative mathematical reasoning.   
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The examples below are chosen to represent and illustrate the different types of analysis and the 
categorisation of the tasks in the national physics tests2. All of the tasks are chosen from public tests. 
Normally, subtasks are treated separately because the task variables and the analysis of the 
textbooks can be different. The outline of all tasks in a test begins in the same way; first is the 
number of the task in the test given and after that, enclosed in brackets, the task’s number in the 
National Test Bank for physics. On the next line are the maximum scores for the task given. The 
scores are divided into two different categories, G-scores and VG-scores. The maximum scores for 
each category are separated with a slash, for example 2/0 tells that a student can get a maximum of 
two G-scores and zero VG-scores on that particular task. In the same way, 1/1 tells that the 
maximum is one G-score and one VG-score. If the task consists of subtasks: a, b, etc.; the total scores 
for the subtasks are separated with commas.  

 
------------------------------------------------------------------------------------------------------------------------------------- 
Task no. 3 (1584) 
2/0, 1/0 
    
A weightlifter is lifting a barbell that weighs 219 kg. The barbell is lifted 2.1 m up from the floor 
in 5,0 s. 
 
 
 
 
 
 
 
 
 
a) What is the average power the weightlifter develops on the barbell during the lift? 

 
 
 

 
2 The original format of the physics tests from the National Test Bank is A4. If this thesis is read on A5 format, 
the size of the examples below is √2 times larger 

Short account for your answer: 
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b) What is the average power the weightlifter develops on the barbell when he holds it 
above the head during 3.0 s? 

 

------------------------------------------------------------------------------------------------------------------------------------- 
Analysis of 3a  

I. Analysis of the assessment task – Answers and solutions: A typical solution of an average student 
could be derived by the relation between power and change in energy during a specific time. Change 
in energy is here the same as change in potential energy for the barbell. Multiply the mass of the 
barbell with the acceleration of gravity and the height of the lift, and then divide by time to get the 
power asked for. The mathematical subject area is identified as algebra, in this case to work with 
formulas. The identification of the situation to lift a barbell can trigger the student to use a certain 
solution method and is therefore included in this analysis as an identified “real-life” situation. 

II. Analysis of the assessment task – Task variables: The assignment is to calculate the average 
power during the lift. The mass of the barbell, the height of the lift and the time for the lift are all 
considered as mathematical objects. As mentioned above, an object is the entity one is doing 
something with. In this example, all the objects are given explicitly in the assignment in numerical 
form. In the presentation of the assignment there is also an illustrative figure of the lift. 

III. Analysis of the textbooks and handbook – Answers and solutions: The formula for power, 
P=ΔW/Δt, with explanation “ΔW = the change in energy during time Δt” is given in the handbook 
(p.105). So is the formula for “work during lift” Wl = mg∙h, with the explanatory text “A body with 
weight mg is lifted the height h. The lifting work is…” (p.104), and the formula for potential energy 
with the text “A body with mass m on the height h over the zero level has the potential energy Wp= 
mg∙h” (p.104). In the mathematics book Ma3000AB, there are plenty of examples and exercises of 
how to use formulas, e.g. on pages 28-30. In the physics book ErgoA, power is presented as work 
divided by time and work is in one instance exemplified as lifting a barbell. On page 130 there is an 
identical example where the power during the lift of a barbell is calculated. There is one example on 
page 136 where work during a lift is calculated in relation to change in potential energy. Exercise 5.05 
is solved by calculating work during a lift and exercise 5.10 is also solved by a similar algorithm.  

IV. Argumentation for the requirement of reasoning: The analysis of the textbooks shows that there 
are more than three tasks similar to the task up for categorisation with respect to the task variables, 
and these tasks can be solved with a similar algorithm. As mentioned in the method section, if the 
students have met tasks solvable with a similar algorithm at least three times, it is assumable that 

Short account for your answer: 
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they remember the solution procedure. This task is then categorised as solvable using imitative 
reasoning, in this case FAR. 

Analysis of 3b  

I. Analysis of the assessment task – Answers and solutions: It is not necessary to use any 
mathematical argumentation in order to solve this task. The solution can be based only on physical 
reasoning; there is no lifting and therefore no work is done, which in turn implies that no power is 
developed.  The task is therefore categorised as solvable with non-mathematical reasoning. This task 
is a typical example of an analysis resulting in the NMR categorisation. 

------------------------------------------------------------------------------------------------------------------------------------- 

Task no. 13 (1184) 
0/2  
 
A patient is going to get an injection. The medical staffs are reading in the instructions that they are 
supposed to use a syringe which gives as low pressure as possible in the body tissue. Which of the 
syringes A or B shall the staff choose if the same force, F, is applied and the injection needles have 
the same dimensions? Argue for the answer 

 

I. Analysis of the assessment task – Answers and solutions:  To solve this task the student can use 
the relation between pressure, force and area, p=F/A. Neglect the hydrostatic pressure from the 
injection fluid. If the force that the staff applies to the syringe is the same, it is the area of the bottom 
that affects the pressure; the larger the area the less the pressure. The staff should choose syringe B. 
The mathematical subject area is identified as algebra, to work with formulas, and also 
proportionality.  

II. Analysis of the assessment task – Task variables: The assignment is to argue for, and to choose 
which syringe that gives the minimum pressure. Only the force is given as a variable, represented 
with a letter. Key words for the students can be force and pressure. The situation is illustrated with a 
figure where it appears that syringe B has a greater diameter than A.  

III. Analysis of the textbooks and handbook – Answers and solutions: In the handbook, the relation 
p=F/A is defined. Proportionalities are discussed and exemplified in Ma3000AB, but are not used for 
general comparisons. There is one example in Ergo A about how different areas affect the pressure 
and also one exercise that is solved in a similar way, using a general comparison between different 
areas and pressure.   
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IV. Argumentation for the requirement of reasoning: There is only one example and one exercise 
that can be considered somehow similar with regard to task variables and solution algorithm. The 
formula is in the handbook, but there has to be some understanding of the intrinsic properties in 
order to be able to use the formula in the solution. This task was therefore considered requiring 
some creative mathematical reasoning, in this case GCR, in order to be solved. 

During the analysis process situations occurred when the analysis was not as straight forward as in 
previous examples. All these tasks were discussed in the reference group and below is one example 
of the borderline cases that arose. 

------------------------------------------------------------------------------------------------------------------------------------- 

Task no. 12 (1214) 
1/2  
 
In order to determine the charge on two small light silver balls, the following experiment was 
conducted. The balls, which were alike, weighed 26mg each. The balls were threaded on a nylon 
thread and were charged in a way that gave them equal charges. The upper ball levitated freely a 
little distance above the other ball. There were no friction between the balls and the nylon thread. 
The distance between the centres of the balls was measured to 2.9 cm. What was the charge on each 
of the balls? 

 

I. Analysis of the assessment task – Answers and solutions: To derive at a solution, the forces acting 
on the upper ball must be considered. Because it is levitating freely, it is in equilibrium and according 
to Newton’s first law the net force on the ball is then zero. The forces acting on the ball are the 
gravitational force, F = mg, (downwards) and the electrostatic force from the ball below, F = kQ1Q2/r2, 
(upwards). Put these expressions equal and solve for Q1, using that Q1 = Q2, which will give the 
charges asked for. The mathematical subject area is identified as algebra, to work with formulas and 
to solve quadratic equations. 

II. Analysis of the assessment task – Task variables: The assignment is to calculate the charges on 
the balls. The mass on each of the balls and the distance between their centres are mathematical 
objects given numerically and explicitly in the assignment. The information of the charges’ equal 
magnitude is textual and a part of the description of the situation. There is also an additional figure 
of the balls on the thread, illustrating the experiment. 

III. Analysis of the textbooks and handbook – Answers and solutions: Coulomb’s law, F = k ∙ Q1Q2/r2 
(the formula for electrostatic force), is given in the handbook (p. 108) with explanation “r=distance 
between the charges and … k =… ≈ 8.99 ∙ 109 Nm2/(As)2“.  In the mathematics book Ma3000AB there 
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are plenty of examples and exercises of how to use formulas, e.g. on pages 28-30 and of solving 
quadratic equations on page 269. In the physics book ErgoA, Coulomb’s law is introduced and 
exemplified and there are at least three exercises of calculating the charge on different objects using 
this law. There is one example of a levitating charge (p. 227), but in this case in a homogeneous 
electrical field instead of due to the electrostatic force from another charged particle. There are also 
two exercises of similar situations as in the example. Newton´s first law is formulated in the theory 
text (p. 91) where it reveals that the net force has to be zero if an object for example is at rest, and 
this relation is used on several different occasions in ErgoA. The gravitational force is introduced on 
pages 92 and is then used throughout the book. 

IV. Argumentation for the requirement of reasoning: Considering the mathematical reasoning, there 
are more than three examples or exercises in the textbooks where the same algorithm has been 
used, i.e. to put two expressions equal, solve for one unknown variable, including taking the square 
root. But there are not three or more occasions considering the physics context. To solve the task the 
student must first identify the force situation in order to know which expressions to equate. After 
having discussed this task in the reference group, it was concluded that analysing the physics context 
does not belong to the mathematical reasoning. Although mathematical reasoning is necessary to be 
able to solve the task, it is not enough, and although the mathematical reasoning can be considered 
as some kind of algorithmic, the task was categorised to require local creative reasoning LCR, where 
the minor step is to analyse the physics. 

Tasks categorised as solvable with FAR, like 3a above, are hence forward called FAR-tasks and tasks 
solvable with GAR are called GAR-tasks. Together these kinds of tasks are referred to as IR-tasks. 
Tasks categorised solvable by only using physics, that is no mathematics were required, like 3b 
above, are hence forward called NMR-tasks. Tasks requiring GCR to be solved, like 13 above, will be 
called GCR-tasks and in the same way will tasks requiring LCR, like 12 above, be called LCR-tasks. 
Tasks requiring either LCR or GCR will be called CR-tasks.  
 

7.2 Reflections about the method for categorising mathematical reasoning 
The construction of a typical solution in the first step of the procedure is one of the reductions in the 
method. Identification of the mathematical subject area and the task variables depends on this 
typical solution and the results from the identification effect the categorisation of the required 
mathematical reasoning. Hence, how this typical solution is chosen can affect the findings of the 
analysis, i.e. the distribution of the mathematical reasoning requirements could differ from the one 
presented in this study. Justification for that the constructed solution is a plausible student solution 
comes from the researchers experience as a teacher, as well as considering the solution proposals 
and the scoring rubric provided with each test.  

The third step of the procedure comprises an analysis of the textbooks in mathematics and physics. 
As mentioned earlier, one textbook each for mathematics and physics have been chosen to 
represent an average upper secondary students’ available literature. There are about four different 
textbooks for each of the courses and which books to use in mathematics and physics is often 
decided locally at each school. The combination of the textbooks students in one school use could 
differ from the combination used by students in other schools. Although the textbooks cover 
essentially the same subject areas, examples and exercises could vary between the books. This 
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influences the number of similar tasks, as the one analysed, that can be found in the textbooks, 
which in turn effects the categorisation of the analysed task and eventually the presented 
distribution of the mathematical reasoning requirements. If examples the teachers discuss during 
classes were included in the analysis, the number of similar tasks might be higher than when only 
textbooks are used as a representation of the learning history. The number of IR-tasks would then be 
higher and the number of CR-tasks would be lower than the findings in this study.  

In the last step of the procedure, a task is argued to be a FAR-task if similar tasks have been met at 
least three times before. That three is an appropriate assumption is supported by a study by Boesen 
et al. (2010). They use three as a minimum to categorise a task as FAR and found that when students 
are put in front of FAR-tasks in national mathematics tests, the students try to recall appropriate 
algorithms to solve the test tasks. It is clear that another choice than three as the minimum number 
will affect the number of tasks categorised as FAR in general. It is also likely that the number of 
similar tasks different students need to have met to be able to remember a solution differ.     

7.3 Comparing grades with kinds of tasks solved 
The grades a student can receive on a test vary between Not Pass (IG), Pass (G), Pass with distinction 
(VG) and Pass with special distinction (MVG). For each test there are certain score levels the students 
need to reach to get a certain grade. To get the grade MVG, students also need to fulfil certain 
quality aspects besides the particular score level. To decide if it is possible for a student to get one of 
the higher grades without using any kind of CR, each test is first analysed separately. First the score 
level for each grade was compared with the maximum scores that are possible to obtain, given that 
the student only has solved (partly or fully) IR- and/or NMR- tasks. The available student data do not 
give any information about which of the qualitative aspects required for MVG the students have 
fulfilled, but the data sheets include students grades, thus MVG can be included in the analyses as 
one of the higher grades. After analysing if it is possible at all to receive the grades VG or MVG 
without solving any CR-tasks, students’ actual results on the categorised tasks for those particular 
tests are summed up. The proportion of students who only got scores from IR- and NMR-tasks is then 
graphed with respect to the different grades. 

7.4 Statistical method 
Before describing the method used for the more quantitative analysis, the concept odds ratio will be 
explained as well as the Mantel-Haenszel procedure. 

7.4.1 Odds ratio 
Odds ratio can be used to measure the dependency between different nominal variables. It is 
commonly used in various clinical research (Haynes, Sacket, Guyatt, & Tugwell, 2006) or in biological 
statistics (McDonald, 2009). Because odds ratio can be used for qualitative data and the results only 
show influence from one variable and remain undisturbed from others, this model is used in various 
social science research (Ribe, 1999). Keeping the groups fixed, odds is defined as the probability p for 
an event to happen divided by the probability for the same event not to happen, O=p/(1-p). Odds 
ratio is then defined as the ratio between the different odds for the event with respect to different 
groups (see below). 
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Table 1. Example of a probability matrix 

Probability for 
Y wrt groups 

Y happens  Y does not happen 

Group 1 p1 1 – p1 

Group 0 p0 1 – p0 

 

Odds ratio: 𝜃𝜃 =
𝑝𝑝1

1−𝑝𝑝1
𝑝𝑝0

1−𝑝𝑝0

= 𝑝𝑝1(1−𝑝𝑝0)
(1−𝑝𝑝1)𝑝𝑝0

   

If the odds ratio is equal to 1, the probability for the event to happen does not depend on the factor 
differentiating the groups. Calculations of the odds ratio can thus tell how the probability for success 
in one group differs from the probability for success in another group. 

Ribe (1999) describes one example where the odds ratio is used to see how the risk to be 
unemployed is affected by the country of birth. First the data is stratified so that other variables that 
also might affect unemployment are held constant. The two groups that are compared are people 
born in Iran and people born in Sweden. 

Situation 1: woman 27 – 39 years, no upper secondary education, single.  

Country of birth Probability to be unemployed Odds to be unemployed  
Iran 0,78365 3,62214 
Sweden 0,32274 0,47654 
Odds ratio = 3,62214/0,47654 = 7,6 

Situation 2: Man 40 – 49 years, higher education, married. 

Country of birth Probability to be unemployed Odds to be unemployed  
Iran 0,24359 0,32203 
Sweden 0,04065 0,04237 
Odds ratio = 0,32203/0,04237 = 7,6 

The conclusion in this example is that the country of birth affects the risk to be unemployed and that 
the probability to be unemployed is much higher if one is born in Iran than in Sweden. 

7.4.2 The Mantel-Haenszel procedure 
The MH-procedure was originally developed for data analyses from retrospective studies in the 
clinical epidemiology area. The purpose of the MH-procedure was to test if there were any relations 
between the occurrence of a disease and some factors. The disease could for instance be lung cancer 
and one factor could be cigarette smoking (Mantel & Haenszel, 1959). A retrospective study can be 
performed on already collected data and does not require as big sample size as a forward study (also 
called prospective study) does. In a retrospective study of a disease one looks for unusually high or 
low frequency of a factor among the diseased persons, while in a forward study it is the occurrence 
of the disease among persons possessing the factor that is looked at (ibid.). The calculations involved 
in the MH-procedure are quite simple and this is probably a contributing factor to that the method is 
commonly used in various areas today e.g. epidemiology (Rothman, Greenland & Lash, 2008), 
biology/biological statistics (McDonald, 2009) and social/educational sciences (Fidalgo & Madeira, 
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2008; Guilera, Gómez-Benito & Hidalgo, 2009; Holland and Thayer, 1988; Ramstedt, 1996). One of 
the most common uses of the MH-procedure in educational studies seems to be for detecting 
existence of differential item functioning (DIF). DIF exists if people with the same knowledge/ability, 
but belonging to different groups, have different probabilities to give the right answer to an 
item/task. Ramstedt (1996) used a modified version of the MH-procedure to analyse if there were 
differences between how boys and girls succeeded on national physics tests depending on their sex, 
according to their personal identity number. According to Ramstedt, Holland and Thayer (1988) were 
the first ones to use the MH-procedure to detect DIF. 

To use the MH-procedure, data should first be stratified into 2x2 contingency tables. In these tables 
the rows and the columns represent the two nominal variables that will be tested for dependence. 
The variable that is placed in the rows is the one that is tested whether it explains/affects the 
outcome of the variable placed in the columns. The row variable is thus sometimes called 
explanatory variable and the column variable is called response variable. The different contingency 
tables represent a third nominal variable that identifies the repeat. The two nominal variables could 
for example be: a disease and a factor; a plant and a habitat; group belonging and success on tasks. 
Examples of the repeat variable are different medical centers, different seasons, different teachers 
etc.  

Table 2. Contingency table for repeat i. 

Table i Y = 1 Y = 0 Totals 

X = 1 ai bi ni1 

X = 0 ci di ni0 

Totals mi1 mi0 ni 
 
In Table 2 X and Y represent the two nominal variables. Both variables are coded by the values 0 and 1 
for the respective object included in the study. Belonging to the group of diseased persons might 
then be represented by X = 1 and not being diseased with X = 0. In the same way, the occurrence of a 
factor may be represented by Y = 1 and non-existence of the factor with Y = 0. The letters ai, bi, ci and 
di denote the frequencies for respective occurrence and ni = ai + bi + ci + di. A diseased person 
possessing the factor will then be one of those contributing to the frequency ai. The probability p for 
an event is estimated by the relative frequency p�. For example, the relative frequency for the event 
X = 1 and Y = 1 is p�  = ai/ni.  
 
The MH-procedure includes an estimation of the common odds ratio, 𝜃𝜃�𝑀𝑀𝑀𝑀, for the different 
contingency tables. From Table 2 follows that the odds for X = 1 and Y = 1 is estimated by ai/bi and the 
odds for X = 0 and Y = 1 is estimated by ci/di. This gives that the odds ratio for contingency table i is 
estimated by 

𝜃𝜃�𝑖𝑖 =
a𝑖𝑖

b𝑖𝑖�
c𝑖𝑖

d𝑖𝑖�
=  

a𝑖𝑖d𝑖𝑖
b𝑖𝑖c𝑖𝑖

. 

The common odds ratio calculated in the MH-procedure is defined as 
 

𝜃𝜃�𝑀𝑀𝑀𝑀 =  
∑ a𝑗𝑗d𝑗𝑗/n𝑗𝑗𝑗𝑗

∑ b𝑗𝑗c𝑗𝑗/n𝑗𝑗𝑗𝑗
=
∑ 𝑤𝑤𝑗𝑗𝜃𝜃�𝑗𝑗𝑗𝑗

∑ 𝑤𝑤𝑗𝑗𝑗𝑗
 , 
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where 𝜃𝜃�𝑖𝑖 is the odds ratio for table i and 

𝑤𝑤𝑖𝑖 =
𝑏𝑏𝑖𝑖𝑐𝑐𝑖𝑖
𝑛𝑛𝑖𝑖

 

is the weight associated to 𝜃𝜃�𝑖𝑖. The summations run over all contingency tables, i.e. j = 1,…,k, where k 
is the number of contingency tables. Thus 𝜃𝜃�𝑀𝑀𝑀𝑀 is a weighted average of the individual odds ratios. 
The assumed null hypothesis, H0, is that there is no dependence between the variables X and Y, i.e. 
𝜃𝜃𝑀𝑀𝑀𝑀 = 1.  
 
The most important step in the procedure is the calculation of a MH test statistic, which tells 
whether 𝜃𝜃�𝑀𝑀𝑀𝑀 differs sufficiently from 1 so that H0 can be rejected. The most commonly used test 
statistic, χ2

MH, is approximately chi-square distributed, and is compared to a chi-square distribution 
with one degree of freedom (Mantel & Haenszel, 1959; Ramstedt, 1996; Mannocci 2009; McDonald, 
2009).  The definition of χ2

MH is 

𝜒𝜒2𝑀𝑀𝑀𝑀 =  
(|∑ a𝑖𝑖 − ∑ 𝐸𝐸(𝑖𝑖 a𝑖𝑖)𝑖𝑖 | − ½)2

∑ 𝑉𝑉𝑉𝑉𝑉𝑉(a𝑖𝑖)𝑖𝑖
 , 

where 𝐸𝐸(a𝑖𝑖) = 𝑛𝑛𝑖𝑖1𝑚𝑚𝑖𝑖1 𝑛𝑛𝑖𝑖�  is the expected value for a𝑖𝑖 under H0 and 
 

𝑉𝑉𝑉𝑉𝑉𝑉(a𝑖𝑖) =
𝑛𝑛𝑖𝑖1𝑛𝑛𝑖𝑖0𝑚𝑚𝑖𝑖1𝑚𝑚𝑖𝑖0

𝑛𝑛𝑖𝑖2(𝑛𝑛𝑖𝑖 − 1)
 

is the variance for a𝑖𝑖 (Mantel & Haenszel, 1959).  
 
Instead of χ2

MH, a test statistic, ZMH, which is approximately normal distributed, can be used 
(McCullagh & Nelder, 1989). The advantage of using ZMH is that the direction of a possible 
dependence is detected. Therefore this test statistic is used in this thesis.  The definition of ZMH is 
 

𝑍𝑍𝑀𝑀𝑀𝑀 =  
∑ {a𝑖𝑖 − 𝐸𝐸(a𝑖𝑖)}𝑖𝑖 − ½

𝜎𝜎∑ {a𝑖𝑖−𝐸𝐸(a𝑖𝑖)}𝑖𝑖

 , 

where 𝐸𝐸(a𝑖𝑖) is as above and 

𝜎𝜎∑ {a𝑖𝑖−𝐸𝐸(a𝑖𝑖)}𝑖𝑖 = �𝑣𝑣𝑉𝑉𝑉𝑉(a𝑖𝑖 − 𝐸𝐸(a𝑖𝑖)) = �
∑ {𝑛𝑛𝑖𝑖1𝑛𝑛𝑖𝑖0𝑚𝑚𝑖𝑖1𝑚𝑚𝑖𝑖0}𝑖𝑖

𝑛𝑛𝑖𝑖2(𝑛𝑛𝑖𝑖 − 1)
 

is the standard deviation of a𝑖𝑖 − 𝐸𝐸(a𝑖𝑖) (McCullagh & Nelder, 1989). The value ½ that is subtracted in 
the numerator for each of the statistics is a continuity correction value (Mantel & Haenszel, 1959; 
McCullagh & Nelder, 1989).  

7.4.3 Method 
To answer the third research question, if there is a dependence between students’ success on IR-
tasks and how they succeed on GCR-tasks, the MH-procedure was first used on one randomly chosen 
pair of IR/GCR-tasks from one of the eight physics tests. For each of the chosen tasks, students’ 
scores were collected from the data sheet, as well as the ID number of respective student’s teacher. 
The two different categories of tasks, IR and GCR, are the two nominal variables tested for 
dependence. To control for a possible influence from students different teachers, teacher is chosen 
as the variable that identifies the repeat. One influence may be on the correcting and scoring of the 
tasks, since the correcting involves some interpretation of the scoring rubrics and could thus result in 
some differences in how to score a specific answer. It is assumed that the individual teacher is 
consistent in the correcting of his/her students’ solution to respective task. Another influence from 
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the teachers is that different teachers show different examples on the blackboard, which influence 
what become familiar solutions to students. There can also be a difference in what kind of 
mathematical reasoning different teachers give their students the possibility to practice on. Some 
teachers may be more focused on working with creative mathematical reasoning than others.  

To see if there was any consistency in the result from the MH-procedure, more tasks were chosen 
from the eight tests.  The number of GCR tasks varied between two and six for the different tests, so 
it was decided to choose two GCR tasks from each test. The GCR tasks were randomly selected where 
it was possible. It was further decided to test how the success on these two chosen GCR-tasks 
depended on success on two of the simpler IR-tasks and two of the harder IR-tasks on the same test. 
The difference between a simpler and a harder IR-task turned out to mainly depend on how many 
steps that were needed in the solution algorithm. For a simpler IR-task, the solution consisted mostly 
of one step; and for a harder IR-task, there were often three or more steps to remember. The 
number of IR-tasks varied between six and nine in the different tests. Each GCR-task was then tested 
for dependence against all four of the IR-tasks.   

MATLAB was used to arrange the contingency tables needed in the MH-procedure3. The rows in a 
contingency table represent the students who have succeeded (1) and not succeeded (0) on the 
particular IR-task. The columns represent in the same way the students who have succeeded (1) and 
not succeeded (0) on the GCR-task. Success on a task is defined as to have solved the task 
completely, i.e. to have attained the maximum score. For each entry, MATLAB calculated the number 
of students that fulfilled that particular combination e.g. ai is the number of students who have 
succeeded on both the IR-task and the GCR-task. The row and column totals were summarized, as 
well as the total number of students for teacher i.  

Table 3. Contingency table for IR and CR with respect to teacher i. 

Teacher i GCR (1)  GCR (0) Totals 
IR (1) ai bi ni1 
IR (0) ci di ni0 
Totals mi1 mi0 ni 

 

After this, ZMH the approximately normal distributed test statistic, was calculated for every pair i.e. 64 
test statistics were calculated. The obtained value is compared to critical values for a two-tailed test 
and 5 % significance level, to decide if H0 can be rejected or not. For a table to be included in the 
calculation of the test statistic, each of the calculated expected values has to be 5 or more. Because 
this is a pilot study, no correction for the multiple comparisons was done (cf. McDonald, 2009).   

8 Summary of the studies 

8.1 Paper I 
The study in Paper I addresses the first of the research questions, “What is the character of the 
mathematical reasoning that is required of students in upper secondary school to solve the tasks in 
physics tests from the Swedish national test bank?”. To answer this question, 209 tasks from ten 

 
3 See Appendix for the MATLAB code. 
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different physics tests, randomly selected from the National Test Bank in Physics, were analysed. The 
analysis comprised of a thoroughly qualitative examination of the tasks as well as of the textbooks in 
mathematics and physics. The textbooks were chosen to represent the students’ learning history. 
Certain task variables were identified and the test tasks were compared to the tasks met in the 
textbooks. The method used is the one called “categorisation of mathematical reasoning 
requirements” and described in the method section. The tasks were categorised according to the 
different kind of mathematical reasoning (i.e. FAR, GAR, LCR or GCR) required to reach a solution; or 
if the task were solvable by only using knowledge from physics (i.e. NMR). The analysis was made by 
one researcher and often the process was straight forward, but occasionally some border-line cases 
arose. Thus various examples were continuously discussed in a reference group consisting of one 
mathematician and one mathematics education researcher. Examples of the different kinds of 
analyses are presented in Section 7.1.  

The main results from the analysis of the mathematical reasoning requirements show that three-
fourth of the physics tasks required mathematical reasoning. It is also shown that a third of the total 
number of the tasks require some kind of creative mathematical reasoning to reach a solution, which 
corresponds to 46 % of the tasks requiring mathematical reasoning. Comparing requirements in tests 
for Physics A and for Physics B, there are more tasks in Physics B that can be solved by only using 
NMR. However, when comparing tests from different years the findings reveal a notable variation in 
the distribution of the different reasoning categories. No consistency could be seen among the tests 
with respect to this analysis. These results answer the first of the research questions, to what extent 
and of what kind mathematical reasoning is required when solving physics tests. 

8.2 Paper II 
The second and the third research questions were studied in Paper II. The categorisation of tasks 
regarding their mathematical reasoning requirement from Paper I was used as data, as well as 
students’ scores on the different tasks together with their grades on the different tests. To examine 
the second research question, “Is it possible for a student to get one of the higher grades without 
using creative mathematical reasoning and if it is, how common is it?”, each test was analysed 
separately. The requirements for the various grades were compared to the total score able to receive 
in each category (i.e. IR, CR or NMR). For those tests for which it was possible to get a higher grade 
than G without using CR, the proportion of students who had not solved any CR tasks completely 
were graphed with respect to their grades on the different tests, the method is described more 
thoroughly in Section 7.3.  

The result shows that in three of eight tests it is possible to receive one of the higher grades without 
solving any tasks requiring CR. Nevertheless, when graphing the proportions, it turns out this is not to 
frequently occurring. Only in one of the eight tests a larger number of the students get a higher 
grade than G without solving CR tasks. This test, however, differs from the other tests in the way that 
the number of NMR tasks is larger and could be a reason for the larger number of students with 
higher grades.  This answers the second of the research questions, whether it is possible and to what 
extent higher grades are received without solving tasks requiring creative mathematical reasoning. 
The analysis of the tests also revealed that mathematical reasoning was needed to attain a G on six 
of the eight physics tests. Another finding in the analysis of the scores with respect to reasoning 
category is that the average score on CR tasks is the same on both Physics A and Physics B tests. 
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To answer the last of the research questions, “Does a student’s success on tasks categorised as 
requiring creative mathematical reasoning depend on the student’s success on tasks requiring 
imitative reasoning?”, the Mantel-Haenszel procedure was used. In the procedure different normal 
distributed test statistics, ZMH, are calculated to decide if there is any relation between how a student 
succeeded on an IR-task and on a GCR-task. The values for ZMH are compared to the critical values for 
a two-tailed test and 5 % significance level to see if there is any dependency between success on 
GCR-tasks and success on IR-tasks. The MH-procedure is described in Section 7.4.2 and the method in 
Section 7.4.3. The study’s first goal is to decide if the MH procedure is an appropriate method to use 
to examine this kind of relation. If the procedure seems to give results to trust on, the second goal 
will be to analyse these results in order to answer the third research question.  

The results from the study show that the MH-procedure can be used for the desired examination, 
but that the MH-procedure is sensitive to the number of students each teacher is responsible for, 
with respect to the correcting and grading of the tests. The calculated test statistics from the MH-
procedure indicates that there is a positive dependence between success in IR-tasks and GCR-tasks. 

9 Discussion of the results 
The results from both papers confirm that the ability to reason mathematically is important when 
solving tasks in physics tests from the National Test Bank. In Paper I is shown that 75 % of the tasks 
require mathematical reasoning, and almost half of these 75 % require creative mathematical 
reasoning. Showing that a majority of the tasks in physics tests require mathematical reasoning is 
one way to support the assumption that mathematics is important when learning physics. Further 
support for the assumption is given by the result in Paper II. The analysis of the score levels for the 
grades revealed that it was impossible to pass six of the eight tests without reasoning 
mathematically. This is a main result backing up the conclusion above. Also worth commenting on is 
the result that students can get one of the higher grades without using any kind of creative 
mathematical reasoning. Counting scores for the tests with respect to reasoning category shows that 
higher grades are possible to attain in three out of eight tests. However, comparing this result with 
student data tells that this occurs rarely. Thus the importance of being able to reason 
mathematically, in particular the ability to use creative mathematical reasoning, to pass and to do 
well on physics tests is strengthened further. As the small review in Section 5.2 about physics 
reasoning shows, previous research has studied sense making in physics without involving or focusing 
on the mathematical aspects. This thesis is a contribution by considering one part of the role of 
mathematics students are confronted when learning physics in upper secondary school. The findings 
should be interesting both for education researchers in mathematics and in physics, as well as for 
teachers in both subjects.  

The importance of mathematics is explicated in the syllabuses for both physics and mathematics, as 
well as in the curriculum for upper secondary school. In this thesis is one of the aspects of 
mathematics studied, that is mathematical reasoning, and this aspect is studied in relation to 
national tests in physics. As mentioned in Section 3.3, the purpose of national tests is to be an 
assessment support to teachers, and also a guiding of how to interpret the syllabuses/curricula. The 
tests may thus be viewed as an extension of the syllabuses/curricula and in this respect the 
conclusion from the results is consistent with what to expect from the tests. The necessity of being 
able to reason mathematically is, with respect to the results discussed in previous paragraph, one of 
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the things communicated by the tests to the teachers. According to the well-known saying “What 
you test is what you get”, tests stress what is focused on.  Thus the necessity of mathematical 
reasoning is also communicated to the students. The results in this thesis clarify, at least implicitly, to 
both teachers and students that it is unlikely to attain a higher grade than Pass without having some 
understanding of intrinsic mathematical properties. From the discussion above about procedural and 
conceptual knowledge we know that some intrinsic understanding may follow from working with 
exercises involving standard procedures. At the same time it is clear that one cannot fully understand 
the underlying concepts if the focus only is on the procedures. Therefore, viewing mathematics only 
as the formulas in the handbook is not fruitful, neither for students striving to succeed on physics 
tests, nor for teachers in their aim to help the students to reach their goals, something most teachers 
are aware of.  

As shown in Paper I, there were on average more CR-tasks in the Physics B tests than in the tests for 
Physics A. Scrutinising this result for each test shows that this result varies over the years and that 
the variation between tests for the same course sometimes is bigger than between the different 
courses. Further analysis in Paper II reveals that the average proportions of the scores for the 
different reasoning categories are the same for tests in Physics A and Physics B. Assuming that the 
average result is general and drawing on the results from both papers, it seems that solving a CR-task 
in a Physics A test scores higher than solving a CR-task in a Physics B test. One conclusion could be 
that being able to perform more demanding mathematics is more valued in Physics A than in Physics 
B. Comparing this to the text in the syllabuses, which states that there is a higher demand on the 
mathematical processing in Physics B, one could ask if not giving as many points for the creative 
mathematical processing in Physics B as in Physics A is a consequence of the test developers 
interpretation of the syllabuses.  Although there were no intentions to evaluate the tests from the 
National Test Bank in Physics, some results with this character came up that seems important to 
comment on. The difference in the scores for CR-tasks in Physics A and Physics B might as well be a 
consequence of the test developers’ use of another framework for categorising the tasks according 
to the goals in the syllabuses. This thesis’ description of the mathematical reasoning requirements in 
physics tests can provide a complement for national test developers to decide whether the tests 
assess what is intended according to the curriculum. 

According to the framework, a task is categorised to require creative mathematical reasoning if some 
novelty is necessary to come up with a solution. The method used equates this condition with if 
there are too few exercises and examples in the textbooks corresponding to the task up for analysis 
with respect to the task variables. By changing one or more of the task variables for a task 
categorised as IR, for example changing the context, a task can be made requiring CR instead of IR. 
This awareness among the national test developers likely influences the amount of the different 
reasoning categories. A comparison between national tests and teacher made tests in mathematics 
shows a significant difference in the mathematical reasoning requirements in the different 
mathematics tests (Palm et al., 2011). However, the analysis in this thesis does not tell if there exist 
physics tasks that always require CR due to their physics content, i.e. a kind of intrinsic property.  It 
would be interesting to modify the conceptual framework that is used in this study and use it to 
analyse physics reasoning. The results from the study presented in this thesis and the result from a 
study on physics reasoning could then be compared and maybe contribute to a deeper 
understanding of the reasoning requirements students are put in front of.  
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The small study about the statistical method shows that the Mantel-Haenszel procedure can be used 
for analysing the relation between how students succeed on different kind of tasks with respect to 
the reasoning requirements. The test statistic from the MH-procedure confirms that students who 
can solve tasks requiring imitative reasoning more likely can solve tasks requiring creative reasoning. 
Although the marking of the test is supposed to be objective, it is known that different teachers 
interpret the solution manual and the criteria for a test differently. The possibility to control for 
different teachers with the different contingency tables is a major reason why the MH-procedure 
was chosen. The constraint on the expected value in each of the entries in the contingency tables 
limited the number of teachers contributing to the calculation of the test statistic. In some cases the 
constraint was not fulfilled for any of the teachers and the test statistic could not be calculated. 
There were also occasions when students’ results from very few teachers contributed to the 
calculation of the statistic; this may influence the generality of the result. To decide if the MH-
procedure is an appropriate method with respect to separating the contingency tables according to 
teachers, further studies are required. McCullagh & Nelder (1989) discuss how a logistic linear model 
could be considered when for example analysing the effect of a new treatment of a disease, 
conducted on different medical centres that differs in some respects that are hard to measure.  By 
doing the logistic parameterisation it is possible to investigate if the treatment has the same 
direction (better or poorer) at all medical centres. If it does not have the same direction, one has to 
be very careful in the conclusions that are drawn from analyses in which results from different 
centres are contributing to the calculation of the result. Different directions can indicate that the 
MH-procedure is not appropriate for the analysis of dependence between a treatment and getting 
well. This linear logistic parameterisation could be one method to use in order to decide if the MH-
procedure is appropriate for analysing dependence between the success on tasks requiring different 
kinds of reasoning.  

The analysis of NMR-tasks was often straightforward as exemplified in Paper I, but on a few 
occasions borderline cases occurred, shown in Section 7.1 and in Paper I. The same can be applied to 
the other categories as well. All borderline cases were discussed in the reference group, as well as 
several of the other tasks. The thorough description in Paper I of the analysis process for six of the 
tasks is included to ensure a high reliability and validity for the method used.  

As mentioned in Section 7.2, textbooks are used to represent the learning history. It is assumed that 
all students have read and worked themselves through all examples and exercises in the textbooks. If 
they have not done that, this could influence the number of IR-tasks on a test for particular students. 
It is not excluded that a solution a student present to a task is a creative solution for that particular 
student. The categorisation is a minimum requirement under the assumption above. If more tasks 
can be considered as IR for particular students this could also influence the actual number of tests on 
which it is possible to get a higher score than G without using any kind of CR. If there were more IR-
scores, there could be more students receiving a VG or a MVG by only solving IR- or NMR-tasks. It 
would be interesting in a future study to let students solve some of the analysed tasks and see what 
kind of mathematical reasoning they actually use (cf. Boesen et al. 2010).  

This thesis fits best among the mathematics in physics research, also mentioned in the introduction. 
Going back to the discussion about how the tests from the National Test bank could be viewed as an 
extension of the national curriculum, one could assume that students’ results on the tests are a 
measure of their knowledge in physics, at least in school physics. The scores and grade on a test 
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should help teachers to decide which goals a student has attained and the level of the achievements 
of the goals. In this respect, students’ grades on the physics tests could be viewed as a measure of 
their attained knowledge in physics. The result that 75 % of the tasks in the physics tests require 
mathematical reasoning and that it is impossible to pass six out of eight tests without mathematical 
reasoning, show that students’ ability to reason mathematically is an integral part of their knowledge 
in physics. This in turn likely influences how students study and prepare themselves for tests in 
physics. It is well known that a focus on IR can explain some of the learning difficulties that students 
have in mathematics (see for example Lithner, 2008). The results above show that a focus on IR when 
learning physics in upper secondary school will make it hard for the students to do well on the 
physics tests. A reasonable conclusion is that focusing on IR can give students learning difficulties in 
physics, as it does in mathematics. To be able to say more about the relation between mathematical 
reasoning and learning in physics further studies are needed; for example a comparison between 
how students have succeeded on tests in mathematics and on the tests analysed in this thesis. 

As accounted for in Section 2.2, much of previous research has focused on students’ use of 
mathematics while learning and solving problems in physics. By instead focusing on the 
mathematical requirements in physics tests, the results presented in this thesis hopefully are a 
complement and a contribution to the research about how students’ knowledge in mathematics 
influence their success and learning in physics. 
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Paper 1 

 
Mathematical Reasoning Requirements 

in Swedish National Physics Tests 
Helena Johansson 

Abstract 
The ability to reason mathematically is widely accepted to be of great importance when learning 
physics. In this study, a sample of physics tests was analysed with respect to the following question: 
“What is the character of the mathematical reasoning that is required of students in upper secondary 
school to solve the tasks in physics tests from the Swedish national test bank?”. In the analysis it was 
determined whether mathematical reasoning was required at all and if it was, that reasoning was 
characterised. The framework used distinguishes between imitative and creative mathematical 
reasoning. The analysis process consisted of structured comparisons between a representative 
student solution and students’ learning history. The learning history was delimited to the textbooks 
and the content was compared to various key characteristics in the solution.  Of the 209 analysed 
tasks, three-fourths required mathematical reasoning to be solved. Creative mathematical reasoning 
was required for one third of the tasks and two-fifths were solvable using imitative reasoning. The 
result confirms that mathematical reasoning is an important component when taking tests from the 
National Test Bank since a majority of the tasks requires mathematical reasoning. 

Introduction 
Mathematics and physics are historically closely intertwined and many mathematical concepts have 
been developed when needed in the description of the laws of nature. How this relation becomes 
apparent in a school context and how it might affect students’ learning is discussed from different 
point of view in educational research. Some of the discussions depart from the learning of 
mathematics and how the relation to physics could influence this learning, below called physics in 
mathematics. Other discussions take a starting point in the learning of physics and discuss various 
aspects of the relation to mathematics, referred to as mathematics in physics. 

Physics in Mathematics 
Blum and Niss (1991) discuss the great value of keeping a close contact between mathematics and 
physics in school, since physics can provide good examples for validating mathematical models. They 
continue to discuss how separation between the subjects can lead to unnatural distances between 
the mathematical models and the real situation intended to model. In their paper, Doorman and 
Gravemeijer (2008) discuss the advantage of learning mathematical concepts through mathematical 
model building and how examples from physics are beneficial to symbolize the concepts. Hanna 
(2000) and Hanna and Jahnke (2002) propose that it is advantageous to use arguments from physics 
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in mathematical proofs to make them more explanatory. They refer to Polya (1954) and Winter 
(1978) and continue discussing the benefits of integrating physics in mathematics education while 
learning and dealing with mathematical proofs. The importance of using physics to facilitate 
students’ learning of various mathematical concepts is also discussed by Marongelle (2004). Using 
events from physics can help students to understand different mathematical representations. 

Mathematics in Physics 
Tasar (2010) discusses how a closer relation between the school subjects mathematics and physics 
can contribute to the understanding of physics concepts. A closer relation might also prevent the 
assumption that students already understand the mathematical concepts needed in physics (ibid.). A 
closer relation, noticed by Basson (2002), might also decrease the amount of time physics teachers 
spend on redoing the mathematics students need in physics. The “redoing” is likely a consequence of 
e.g. that “physics teachers claim that their students do not have the pre-requisite calculus knowledge 
to help them master physics” (Cui, 2006, p.2). Michelsen (2005) discusses how interdisciplinary 
modelling activities can help students to understand how to use mathematics in physics and to see 
the links between the two subjects. Redish and Gupta (2009) emphasize the need to understand how 
mathematics is used in physics and also the cognitive components of expertise, in order to teach 
mathematics for physics more effectively to students. Basson (2002) mentions how learning 
problems in physics not only depends on the complexity of the subject, but also on improper 
mathematical knowledge. Bing (2008) discusses the importance of learning the language of 
mathematics when studying physics. Nguyen and Meltzer (2003) analyse students’ knowledge of 
vectors and conclude that there is a gap between students’ intuitive knowledge and how to apply 
their knowledge in a formal way, which can be an obstacle when learning physics. Tuminaro (2002) 
has classified a lot of research on how students are using mathematics in physics according to the 
different approaches in the research papers. 

In a study by Mulhall and Gunstone (2012) two major types of physics teachers are distinguished and 
grouped, the Conceptual and the Traditional. Mulhall and Gunstone conclude that a typical teacher in 
the conceptual group presumes that students can solve numerical problems in physics without a 
deeper understanding of the underlying physics. A typical opinion among teachers in the traditional 
group is that physics is mathematical and that a student develops an understanding of the physics by 
e.g. working with numerical problems. Doorman and Gravemeijer (2008) notice, (with reference to 
Clement 1985 and Dall’Alba et. al. 1993), that most of the effort both in physics and mathematics is 
on the manipulations of formulas, instead of focusing on why they work.  

Mathematics in the syllabuses  
The upper secondary school in Sweden is governed by the state through the curriculum and the 
syllabuses. In the curriculum are laid down the fundamental values that are to permeate the school's 
activities and also the goals and guidelines that are to be applied. The syllabuses, on the other hand, 
detail the aims and objectives of each specific course. They also indicate what knowledge and skills 
students must have acquired on completion of the various courses. The usefulness of mathematics is 
expressed in the syllabuses for mathematic –a core subject– as e.g. “The school in its teaching of 
mathematics should aim to ensure that pupils: develop confidence in their own ability to … use 
mathematics in different situations, …, develop their ability with the help of mathematics to solve … 
problems of importance in their chosen study orientation” (Swedish national Agency for Education, 
2001, p.112).  
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According to the syllabus in physics, the teaching should aim to ensure that the students e.g. develop 
their ability to quantitatively and qualitatively describe, analyse and interpret the phenomena and 
processes of physics in everyday reality, nature, society and vocational life; develop their ability with 
the help of modern technical aids to compile and analyse data, as well as simulate the phenomena 
and processes of physics (Swedish National Agency for Education, 2000c). Explicitly, mathematics is 
important when making quantitative descriptions, and implicitly when analysing data, although the 
analysing part is mentioned in relation to technical aids. In the syllabuses for the two courses Physics 
A and Physics B, mathematics is mentioned more explicitly. In Physics A, the students should be able 
to make simple calculations using physics models1 (Swedish National Agency for Education, 2000a). In 
Physics B there is more than one aim that includes mathematics. The student should be able to 
handle physical problems mathematically. They should also be able to make calculations in nuclear 
physics using the concepts of atomic masses and binding energy 1(Swedish National Agency for 
Education, 2000b). Physics B has Physics A as a prerequisite and the students should attain a deeper 
understanding for certain physics concepts when studying Physics B. It is also explicated that there 
are higher demands on the mathematical processing in Physics B (Swedish National Agency for 
Education, 2000c).  

The literature review shows that there is a lot of educational research on the relation between the 
school subjects mathematics and physics. However, no studies on what kind of mathematical 
reasoning (see Theoretical framework for the definition) is required when learning physics were 
found.  It seems natural and important to get a picture of these requirements. As a first step to this 
end, in this paper is studied what is the extent of and what kind of mathematical reasoning is 
required when taking a physics test from the Swedish National test bank. With this departure this 
study is suited among mathematics in physics research. 

Theoretical framework 
The definition of mathematical reasoning and the framework that is used for the analyses in this 
paper are developed by Lithner (2008). The framework has been developed through empirical 
studies on how students are engaging in various kinds of mathematical activities. The initial purpose 
of these studies was to analyse students’ rote thinking and how this may affect their learning 
difficulties in mathematics.  As a result, reasoning as ”the line of thought adopted to produce 
assertions and reach conclusions in task solving” was defined (ibid. p. 257). Mathematical reasoning 
is used as an extension of a strict mathematical proof to justify a solution and is seen as a product of 
separate reasoning sequences. Each sequence includes a choice that defines the next sequence and 
the reason is the justification for the choice that is made. The mathematical foundation of the 
reasoning can either be superficial or intrinsic. The accepted mathematical properties of an object 
are of different relevancy in different contexts e.g. what type of problem one is trying to solve. This 
leads to a distinction between surface properties and intrinsic properties, where the former ones 
have little relevance in the actual context and leads to superficial reasoning, and the latter ones are 
central and have to be regarded (ibid. pp. 260 – 261). Depending on whether the reasoning is 
superficial or intrinsic, the framework distinguishes between imitative and creative mathematical 
founded reasoning.   

 
1 Authors translation  
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One example, described in Bergqvist, Lithner and Sumpter  (2008), of when only surface properties 
are considered, is a student who tries to solve a max-min problem: “Find the largest and the smallest 
values of the function y = 7 + 3x – x2 on the interval [-1, 5]”.  This task can be solved with a 
straightforward solution procedure:  One first uses that the function is differentiable on the whole 
interval to find all possible extreme points in the interval, (i.e. solve f´(x) = 0). If there are extreme 
points, the value at this point is calculated and compared with the values at the endpoints. In the 
situation described, the student does not remember the whole procedure, but reacts on the words 
largest and smallest and starts differentiating the function and solves f´(x) = 0. This calculation only 
gives one value and the answer demands two. Instead of considering intrinsic mathematical 
properties, the student seeks a method that will provide two values and instead solves the second 
degree equation 7 + 3x – x2 = 0. Two points are now obtained and the function values at these points 
are accepted as the solution by the student. Although the student gives these values as an answer, it 
is with some hesitation because the method used did not involve any differentiation, something 
remembered by the student to be related to a max-min problem. 

Creative mathematically founded reasoning 
Creativity is an expression often used in different contexts and without an unequivocal definition, 
(for a discussion see Lithner (2008, pp. 267-268)). Creativity in the framework that is used in this 
paper adopts the perspective of Haylock (1997) and Silver (1997), where creativity is seen as a 
thinking process that is novel, flexible and fluent.  
 
Creative mathematical founded reasoning4 (CR) fulfils all of the following criteria. (Lithner, 2008, 
p.266) 

i. Novelty. A new reasoning sequence is created or a forgotten one is recreated.  
ii. Plausibility. There are arguments supporting the strategy choice and/or strategy 

implementation motivating why the conclusions are true or plausible.  
iii. Mathematical foundation. The arguments are anchored in intrinsic mathematical properties 

of the components involved in the reasoning. 

Imitative reasoning 
Imitative reasoning is categorised in memorised reasoning and algorithmic reasoning. The arguments 
that motivate the chosen solution method (i.e. the reasoning) could be anchored in surface 
mathematical properties.  

Memorised reasoning (MR) fulfils the following conditions (Lithner, 2008, p. 258)  

i. The strategy choice is founded on recalling a complete answer. 
ii. The strategy implementation consists only of writing it down. 

If some kind of calculations is required to solve the task, there is often no use in remembering an 
answer. Instead it is more suitable to recall an algorithm. The term algorithm is here used in a wide 
sense and refers to all the procedures and rules that are needed to reach the conclusion to a specific 
type of tasks, not only the calculations.  

 

 
4 Henceforward called creative mathematical reasoning. 
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Algorithmic reasoning (AR) fulfils the following conditions (ibid. p.259) 

i. The strategy choice is to recall a solution algorithm, which, if it is followed step by step, will 
give the right answer without any demands of novelty.  

ii. The remaining parts of the strategy implementation are trivial for the reasoner and just a 
careless mistake can obstruct the reaching of an answer. 

Depending on the argumentation for the choice of the used algorithm, algorithmic reasoning is 
subdivided into three different categories: Familiar algorithmic reasoning, Delimiting algorithmic 
reasoning and Guided algorithmic reasoning. In this study, only the categories familiar algorithmic 
reasoning and guided algorithmic reasoning are used.   

Familiar AR (FAR) fulfils (ibid. p. 262) 

i. The reason for the strategy choice is that the task is identified as belonging to a familiar class 
of tasks which are known to be solved by a specific algorithm. 

ii. The algorithm is implemented. 

Text- guided AR (GAR) fulfils (ibid. p.263) 

i. The strategy choice concerns identifying surface similarities between the task and an 
example, definition, theorem, rule or some other situation in a text source. 

ii. The algorithm is implemented without verificative argumentation.  

Local and global creative mathematical reasoning 
Lithner (2008) introduces a refinement of the category creative mathematical reasoning (CR) into 
local CR (LCR) and global CR (GCR) that captures some significant differences between tasks 
categorised as LCR and GCR. This differentiation has been more elaborated by other scholars that 
have used the framework, e.g. Boesen, Lithner and Palm (2010) and Palm, Boesen and Lithner (2011). 
The difference between LCR and GCR is that in LCR, the reasoning is mainly MR or AR but contains a 
minor step that requires CR. If instead there is a need for CR in several steps, it is called GCR, even 
when some parts contain AR and/or MR. Important to stress is that as soon as CR is involved there 
has to be some understanding of the intrinsic mathematical properties in the task.  

Non-mathematical reasoning 
In the application of the framework for the analyses described in this thesis, an additional category is 
defined. This category consists of those tasks that can be solved by only using physics knowledge; 
and this category is called non-mathematical reasoning (NMR). Physics knowledge is here referred to 
as relations and facts that are discussed in the physics courses and not in the courses for 
mathematics, according to the syllabuses and textbooks, e.g. that angle of incidence equals angle of 
reflection. In the same way, a solution that requires mathematical reasoning refers to mathematics 
taught in courses at upper secondary school or assumed already to be known by the students 
according to the curricula. 

Research Question 
As mentioned in the introduction, several studies about the relations between the school subjects 
mathematics and physics have been found. However, there seem to be few studies specifically 
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treating mathematical reasoning in physics. Neither regarding what kind of mathematical reasoning 
are required nor how different kinds might affect the learning of physics. By analysing the 
mathematical reasoning requirements of students when taking physics tests, this study attempts to 
contribute to parts of this domain. The motivations for this choice are that a requirement of 
mathematics when learning physics is explicated in the syllabuses and that students focus on 
learning what they meet in tests. With the definitions in the theoretical framework the research 
question is the following: 

 What is the character of the mathematical reasoning that is required of students in upper 
secondary school to solve the tasks in physics tests from the Swedish national test bank? 

Physics tests from the National Test Bank 
About 12% of all students in the upper secondary school in Sweden attend the Natural Science 
Programme or the Technology Programme (Swedish National Agency for Education, 2011). In both 
programmes, the course Physics A is compulsory whereas the advanced course Physics B is elective. 
Physics B can be required when applying to the university or other higher educations and this has to 
be considered by the students when making their course decisions. The aim of the physics courses is 
that the students should attain various goals specified in the syllabuses. A substantial part of the 
physics education consists of performing laboratory work and solving problems (Mulhall & Gunstone, 
2012). Written tests are commonly used as an assessment of the students’ achievements. A student’s 
grade on a course depends on how well the student has achieved the goals for the course (Swedish 
National Agency for Education, 2000a, 2000b). The descriptions in the syllabuses of the goals and the 
different grade levels are quite brief and the intention is that the syllabuses and curricula should be 
processed, interpreted and refined locally at each school. In order to accomplish equivalent 
assessment in physics, the Swedish National Agency of Education provides assessment supports, 
including the National Test Bank in Physics. In this respect the developed physics tests can be 
considered as a governmental concretisation of the syllabuses for physics. The character and the 
design of the tasks in tests stress what is covered in the taught curriculum. The tests also influence 
the teachers’ interpretation of the syllabuses, which by extension stress what students focus on 
(Ministry of Education and Research, 2001; Swedish National Agency for Education, 2003). There 
might be a difference between the national tests and teacher made tests; this is not investigated in 
this study. 

The material in the Test Bank is classified as secret and could be accessed via the Internet by teachers 
who have received a password that lasts until the summer vacation the current academic year.  The 
material consists of single tasks to choose from or complete tests that comprise the goals for Physics 
A or Physics B. The test material in the National Test Bank for Physics is developed by the 
Department of Applied Educational Science at Umeå University, who has had this commission since 
shortly after the new national curriculum was implemented in 1994. In total there are so far 847 
tasks to choose from and 16 complete tests for each of the courses Physics A and Physics B, all 
classified as secret. The first tests are from 1998 and the latest is from spring 2011. In addition, there 
are five tests for each course open for students to practice on. In this way the students get an idea of 
what the tests look like and what is required when taking a test. (Department of Applied Educational 
Science, 2011). As opposed to national tests in e.g. mathematics, the teachers are not obligated to 
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use the test from the National Test Bank in e.g. physics. However, it is common that these tests are 
used as a final exam in the end of the physics courses (Swedish National Agency for Education, 2005). 

Since the start there has been a change in the design of the tasks. In the beginning there was more or 
less only one correct solution to each task. This has evolved to a higher degree of open tasks which 
could be solved using different approaches. The last ten years the final task has been an “aspect-
task” that is assessed according to the achieved level in different assessment groups.  The task should 
be easy to start with, but it should also include a challenge to more proficient students.  The first 
three years, i.e. 1998- 2000, there was an experimental part included in the tests (this part is not 
included in the analysis in this study).  

Methods 
In this study, the following sample of the tests in the National Test Bank was analysed. Tests for the 
course Physics A; December 1998, May 2002 December 2004, May 2005 and December 2008; and for 
Physics B; May 2002, May 2003, May 2005, February 2006 and April 2010. The tests were randomly 
selected with respect to two constraints. First, that there should be five tests for each course Physics 
A and Physics B. Second, that there had to be two or three tests from each one of the courses that 
were not classified as secret; this in order to have the possibility to discuss examples in the analysis.  

Categorisation of Mathematical Reasoning requirements 
The objects of study were the mathematical reasoning required from students to solve the tasks in 
the physics tests from the National Test Bank. No students with their actual solutions were included 
in the study. Required reasoning refers to what kind of reasoning that is sufficient to solve a task, and 
the chosen framework gives the possibility to determine this. In order for a task to be categorised as 
requiring Algorithmic reasoning (AR) or Memorised reasoning (MR), the student should be able to 
recognize the type of task. This could be assumed if identical or similar tasks have been encountered 
on several occasions in the textbooks. Whether the solution to a task requires creative mathematical 
reasoning or is just a routine procedure depends on whether the solution requires some novelty. This 
in turn depends on the education history of the solver (cf. Björkqvist, 2001; English & Sriraman, 2010; 
Lesh & Zawojewski, 2007; Schoenfeld, 1985; Wyndhamn et. al., 2000.) 

When analysing the tasks in the tests and categorising the required reasoning, it is necessary, (as in 
all research), to reduce the complexity. Choosing the framework that is used for the analysis is one of 
the first reductions that are made. Another reduction is due to the fact that no students are present 
in this study and, therefore, there is no actual learning history to consider. According to studies on 
what the education in mathematics looks like, it seems that most of the learning activities consist of 
students working with their textbooks (Swedish National Agency for Education, 2003). In an 
evaluation of the physics education in secondary school, one of the results is that the teaching is 
guided by the textbooks. The evaluation is done on 35 schools with a lower score than average on 
the national physics test for grade nine, so no claims are made that it represents the general 
procedure of the physics education (Swedish Schools Inspectorate, 2010). Also, The Ministry of 
Education and Research (2001) discusses the fact that textbooks and assessment are seen as two of 
the most important control factors of the education. In a qualitative study of a physics class, 
Engström (2011) shows that the textbook still occupies a main part of the guidance of the education 
and the report of TIMMS advanced 2008, shows that teachers mostly use the textbook in physics to 
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choose and solve problems from (Swedish National Agency for Education, 2009). In a study by 
Boesen et. al. (2010) real students´ actual type of mathematical reasoning on categorised tasks on 
tests in mathematics was compared with the categorisation. The result showed that when the tasks 
were similar to the tasks in the textbooks, students were trying to recall algorithms in order to reach 
a solution. If the tasks did not have the same properties as the ones in the textbooks, mostly creative 
mathematical reasoning was used. With reference to the results above, the students’ prior learning 
in physics and mathematics is in this study equated with the content in the textbooks.  

In this study textbooks in both mathematics and physics were considered. When writing the tests, 
the students are allowed to use a handbook in physics designed for the physics courses in upper 
secondary school. The access to formulas and definitions in this handbook also has to be taken into 
account when analysing the tasks. The textbooks and the handbook were chosen among the books 
commonly used in the physics courses in upper secondary school. The books used for categorisation 
of the tasks in Physics A tests where “Ergo Fysik A” (Pålsgård et. al., 2005a) and “Matematik 3000 
Kurs A och B” (Björk & Brolin, 2001). For tests in Physics B “Ergo Fysik B” (Pålsgård et. al., 2005b) and 
“Matematik 3000 Kurs C och D” (Björk & Brolin, 2006) where used. The books from Physics A were 
also considered because Physics A is a prerequisite to be able to take Physics B. The handbook 
chosen was ”Tabeller och formler för NV- och TE- programmen” (Ekbom et. al., 2004). Even if not all 
students in the Swedish upper secondary school are using the books above, it is a reasonable 
assumption of the learning situation for a conceivable student.  

The procedure for analysing the tasks is given by the chosen framework and an analysis sheet was 
used to structure the procedure. The steps comprised in the procedure are outlined below and are 
used earlier in e.g. Palm et.al. (2011).  

I. Analysis of the assessment task- Answers and solutions 
d) Identification of the answers (for MR) or algorithms (for AR) 
e) Identification of the mathematical subject area 
f) Identification of the real life event 
 

II. Analysis of the assessment task- Task variables 
1. Assignment 
2. Explicit information about the situation 
3. Representation 
4. Other key features 

 
III. Analysis of the textbooks and handbook – Answers and solutions 

a) In exercises and examples 
b) In the theory text 

 
IV. Argumentation for the requirement of reasoning 

Analysis of the assessment task- Answers and solutions: When analysing the different assessment 
tasks with respect to answers and solutions, first, a solution plausible to think a student would use 
was constructed by the researcher and written down. This is another reduction of the complexity, 
due to the fact that students were not the object of study. Justification for the fact that the 
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constructed solution is a plausible student solution comes from the researcher’s experience as a 
teacher, as well as from considering the solution proposals and the scoring rubric provided with the 
test. The solution was then looked at with mathematical glasses on and categorised according to 
relevant mathematical subject areas for the solution, e.g. does the solution include working with 
formulas, algebra, diagrams, solving equations, etc. Solutions not including any mathematical object 
were also identified in this step and these tasks were categorised as non-mathematical reasoning 
(NMR) i.e. tasks solvable without any mathematical considerations. As a consequence of the added 
category NMR, this step is an addition to the original procedure used in previous studies. 
Mathematical objects refer to entities to which mathematics is applied. As mentioned above, in the 
present study mathematics refers to school mathematics introduced in mathematics courses given 
for students at upper secondary school or mathematics assumed already to be known according to 
the curriculums. Identification of a “real-life” event refers to tasks where the described situation 
could give a clue to a known algorithm that solves the problem (see the analysed example below) 

Analysis of the assessment task- Task variables: After identification, the next step in the procedure 
was to analyse the solution according to different task variables. The first variable is the explicit 
formulation of the assignment. The second variable is what information about the mathematical 
objects that were given explicitly in the information, contrary to what information the students for 
example need to receive from the handbook or have to assume in order to reach a solution. The third 
task variable concerns how the information was given in the task, e.g. numerically or graphically, 
interwoven in the text or explicitly given afterwards. This is what above (II.3) is referred to as 
representation. The task can also include key words, symbols, figures, diagrams or other important 
hints the student can use to identify the task type and which algorithm to use. These features are 
gathered in the fourth task variable.  

Analysis of the textbooks and handbook – Answers and solutions: The third step in the analysis 
process focuses on the textbooks and the handbook. Formulas used in the solution algorithm were 
looked for in the handbook and the available definitions were compared to the constructed solution 
of the task. The textbooks were thoroughly looked through for similar examples or exercises that 
were solved by a similar algorithm. The theory text was also regarded to see whether it contained a 
description of how similar or identical problems could be solved. 

Argumentation for the requirement of reasoning: Finally an argumentation based on the previous 
steps was made by the researcher for every task, to motivate the concluded reasoning requirement, 
i.e. is it possible for a student to solve the task using a reasoning type based only on superficial 
mathematical properties or is it necessary to use creative mathematical reasoning? In order to be 
categorised as familiar algorithmic reasoning there must have been at least three tasks considered as 
similar in the textbooks. It can then be assumed likely that the students remember the algorithm, 
which might not be the case if there are fewer occasions. That three is an appropriate assumption is 
supported in the study by Boesen et.al. (2010). If the task is similar to a formula or definition given in 
the handbook, it is assumed that the student can use this as guidance in order to solve the task. It is 
then enough with only one similar, previously encountered, example or exercise for the task to be 
regarded requiring text-guided algorithmic reasoning. To be categorised as requiring memorised 
reasoning, tasks including the same answer or solution should have been encountered at least three 
times in the textbooks. It is then assumable that the student can copy the answer. If none of the 
above reasoning types are sufficient for solving the task and there is a need to consider some 
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intrinsic mathematical property, the task is categorised to require some kind of creative 
mathematical reasoning.   

During the analysing process, both tasks where the categorisation was straightforward and tasks 
where the categorisation could be considered as border-line cases occurred. Examples of different 
types of analyses are given in the “Data and Analysis” section. Typical examples of the different kinds 
of categorisation were continuously discussed in a reference group consisting of a mathematician 
and a mathematics education researcher. 

Data and Analysis 
The examples below are chosen to represent and illustrate the different types of analysis and the 
categorisation made of the tasks in the national physics tests. The idea is that the required reasoning 
is represented by the constructed solutions. All of the tasks are chosen from public tests. Normally, 
subtasks are treated separately because the task variables and the analysis of the textbooks can be 
different. The first three tasks are examples of typical categorisations, where no hesitation 
concerning the categorisations’ occurred.  

Task 1 (“The Weightlifter (a)”) 
”A weightlifter is lifting a barbell that weighs 219 kg. The barbell is lifted 2.1 m up from the floor in 
5,0 s. 
 
 
 
 
 
 
a) What is the average power the weightlifter develops on the barbell during the lift?” 

Analysis of the assessment task- Answers and solutions: A typical solution of an average student 
could be derived by the relation between power and change in energy during a specific time. Change 
in energy is here the same as change in potential energy for the barbell. Multiply the mass of the 
barbell with the acceleration of gravity and the height of the lift, and then divide by time to get the 
power asked for. The mathematical subject area is identified as algebra, in this case to work with 
formulas. The identification of the situation to lift a barbell can trigger the student to use a certain 
solution method and is therefore included in this analysis as an identified “real-life” situation. 

Analysis of the assessment task- Task variables: The assignment is to calculate the average power 
during the lift. The mass of the barbell, the height of the lift and the time for the lift are all 
considered as mathematical objects. As mentioned above, an object is the entity one is doing 
something with. In this example, all the objects are given explicitly in the assignment in numerical 
form. In the presentation of the assignment there is also an illustrative figure of the lift. 

Analysis of the textbooks and handbook – Answers and solutions: The formula for power, P=ΔW/Δt, 
with explanation “ΔW = the change in energy during time Δt” is given in the handbook (p.105). So is 
the formula for “work during lift” Wl = mg∙h, with the explanatory text “A body with weight mg is 
lifted the height h. The lifting work is…” (p.104), and the formula for potential energy with the text “A 
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body with mass m on the height h over the zero level has the potential energy Wp= mg∙h” (p.104). In 
the mathematics book Ma3000AB, there are plenty of examples and exercises of how to use 
formulas, e.g. on pages 28-30. In the physics book ErgoA, power is presented as work divided by time 
and work is in one instance exemplified as lifting a barbell. On page 130 there is an identical example 
where the power during the lift of a barbell is calculated. There is one example on page 136 where 
work during a lift is calculated in relation to change in potential energy. Exercise 5.05 is solved by 
calculating work during a lift and exercise 5.10 is also solved by a similar algorithm.  

Argumentation for the requirement of reasoning: The analysis of the textbooks shows that there are 
more than three tasks similar to the task up for categorisation with respect to the task variables, and 
these tasks can be solved with a similar algorithm. As mentioned in the method section, if the 
students have met tasks solvable with a similar algorithm at least three times, it is assumable that 
they remember the solution procedure. This task is then categorised as solvable using imitative 
reasoning, in this case FAR. 

Task 2 (“The Weightlifter (b)”) 
”A weightlifter is lifting a barbell that weights 219 kg. The barbell is lifted 2.1m up from the floor in 
5.0 s.  
b) What is the average power the weightlifter develops on the barbell when he holds it above the 
head during 3.0 s?”  

Analysis of the assessment task- Answers and solutions: It is not necessary to use any mathematical 
argumentation in order to solve this task. The solution can be based only on physical reasoning; there 
is no lifting and therefore no work is done, which in turn implies that no power is developed.  The 
task is therefore categorised as solvable with non-mathematical reasoning. This task is a typical 
example of an analysis resulting in the NMR categorisation. 

Task 3 (“The Syringes”) 
”A patient is going to get an injection. The medical staffs are reading in the instructions that they are 
supposed to use a syringe which gives as low pressure as possible in the body tissue. Which of the 
syringes A or B shall the staff choose if the same force, F, is applied and the injection needles have 
the same dimensions?” Argue for the answer 

 

Analysis of the assessment task- Answers and solutions: To solve this task the student can use the 
relation between pressure, force and area, p=F/A. Neglect the hydrostatic pressure from the 
injection fluid. If the force that the staff applies to the syringe is the same, it is the area of the bottom 
that affects the pressure; the larger the area the less the pressure. The staff should choose syringe B. 
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The mathematical subject area is identified as algebra, to work with formulas, and also 
proportionality.  

Analysis of the assessment task- Task variables: The assignment is to argue for, and to choose which 
syringe that gives the minimum pressure. Only the force is given as a variable, represented with a 
letter. Key words for the students can be force and pressure. The situation is illustrated with a figure 
where it appears that syringe B has a greater diameter than A.  

Analysis of the textbooks and handbook – Answers and solutions: In the handbook, the relation 
p=F/A is defined. Proportionalities are discussed and exemplified in Ma3000AB, but are not used for 
general comparisons. There is one example in Ergo A about how different areas affect the pressure 
and also one exercise that is solved in a similar way, using a general comparison between different 
areas and pressure.   

Argumentation for the requirement of reasoning: There is only one example and one exercise that 
can be considered somehow similar with regard to task variables and solution algorithm. The formula 
is in the handbook, but there has to be some understanding of the intrinsic properties in order to be 
able to use the formula in the solution. This task was therefore considered requiring some creative 
mathematical reasoning, in this case GCR, in order to be solved. 

As mentioned in the “Method” section, during the analysis process situations occurred when the 
analysis was not as straight forward as in previous examples. All these tasks were discussed in the 
reference group and below are some examples of the borderline cases that arose. 

Task 4 (“Charges on a thread”) 
”In order to determine the charge on two small light silver balls, the following experiment was 
conducted. The balls, which were alike, weighed 26mg each. The balls were threaded on a nylon 
thread and were charged in a way that gave them equal charges. The upper ball levitated freely a 
little distance above the other ball. There were no friction between the balls and the nylon thread. 
The distance between the centres of the balls was measured to 2.9 cm. What was the charge on each 
of the balls?” 

 

Analysis of the assessment task- Answers and solutions: To derive at a solution, the forces acting on 
the upper ball must be considered. Because it is levitating freely, it is in equilibrium and according to 
Newton’s first law the net force on the ball is then zero. The forces acting on the ball are the 
gravitational force, F = mg, (downwards) and the electrostatic force from the ball below, F = kQ1Q2/r2, 
(upwards). Put these expressions equal and solve for Q1, using that Q1 = Q2, which will give the 
charges asked for. The mathematical subject area is identified as algebra, to work with formulas and 
to solve quadratic equations. 
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Analysis of the assessment task- Task variables: The assignment is to calculate the charges on the 
balls. The mass on each of the balls and the distance between their centres are mathematical objects 
given numerically and explicitly in the assignment. The information of the charges’ equal magnitude 
is textual and a part of the description of the situation. There is also an additional figure of the balls 
on the thread, illustrating the experiment. 

Analysis of the textbooks and handbook – Answers and solutions: Coulomb’s law, F = k ∙ Q1Q2/r2 
(the formula for electrostatic force), is given in the handbook (p. 108) with explanation “r=distance 
between the charges and … k =… ≈ 8.99 ∙ 109 Nm2/(As)2“.  In the mathematics book Ma3000AB there 
are plenty of examples and exercises of how to use formulas, e.g. on pages 28-30 and of solving 
quadratic equations on page 269. In the physics book ErgoA, Coulomb’s law is introduced and 
exemplified and there are at least three exercises of calculating the charge on different objects using 
this law. There is one example of a levitating charge (p. 227), but in this case in a homogeneous 
electrical field instead of due to the electrostatic force from another charged particle. There are also 
two exercises of similar situations as in the example. Newton´s first law is formulated in the theory 
text (p. 91) where it reveals that the net force has to be zero if an object for example is at rest, and 
this relation is used on several different occasions in ErgoA. The gravitational force is introduced on 
pages 92 and is then used throughout the book. 

Argumentation for the requirement of reasoning: Considering the mathematical reasoning, there 
are more than three examples or exercises in the textbooks where the same algorithm has been 
used, i.e. to put two expressions equal, solve for one unknown variable, including taking the square 
root. But there are not three or more occasions considering the physics context. To solve the task the 
student must first identify the force situation in order to know which expressions to equate. After 
having discussed this task in the reference group, it was concluded that analysing the physics context 
does not belong to the mathematical reasoning. Although mathematical reasoning is necessary to be 
able to solve the task, it is not enough, and although the mathematical reasoning can be considered 
as some kind of algorithmic, the task was categorised to require local creative reasoning LCR, where 
the minor step is to analyse the physics. 

Task 5 (“The seesaw”) 
”How can Lars, 70 kg, and his son Anton, 28 kg, place themselves on a 3.5 m long seesaw so that it 
stays in equilibrium?” 

 

Analysis of the assessment task- Answers and solutions: This task can be solved using the 
equilibrium of torque (moment of force), M = Fr, i.e. the torque with respect to Anton must have the 
same magnitude as the torque with respect to Lars. The forces that act on the seesaw is of the same 
magnitudes as the gravitational forces, F= mg, on Lars and Anton respectively. Assuming that Anton 
is placed 1.60 m from the rotation axis, one gets the equation FLr = FA ∙ 1.60, which will give the 
answer together with the assumption of Anton’s position. As in the examples above, the 
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mathematical subject area was identified as algebra, more specifically to work with formulas and 
equations. To swing a seesaw is a real-life situation often used as examples in mechanics and 
therefore included in the analysis. 

Analysis of the assessment task- Task variables: The assignment is to show where on the seesaw 
Anton and Lars can sit when it is in equilibrium. Mathematical objects that are given numerically in 
the assignment are the masses of Anton and Lars. In addition, the total length of the seesaw is given 
and there is a picture of a seesaw without any people on it.  

Analysis of the textbooks and handbook – Answers and solutions: The formula for Torque is given in 
the handbook (p. 100), M=Fr with explanatory text “r is the perpendicular distance from the rotation 
axis to the line of action of the force. At equilibrium ∑ Fr = ∑ M = 0”. There is also a figure in the 
handbook of M around a rotation axis with F and r marked. In Ma3000AB there are plenty of 
examples and exercises on how to use formulas (e.g. on pages 28-30) and of how to solve equations. 
In ErgoA, the relation for torque is formulated with words in the theory text. When introducing 
torque, the theory also refers to swinging a seesaw, both in text and with images (p. 105). There are 
two examples that use the formula for torque, as defined in the handbook. One of the examples is 
similar to this task except that one does not have to assume any distance. There are some exercises 
using a similar algorithm, but for calculating masses (via force) from given distances instead of 
distances from given masses.  

Argumentation for the requirement of reasoning: The algorithmic procedure to solve a task 
involving a seesaw has been met both in the theory text and in examples. There are plenty of 
exercises of how to handle expressions and solving equations with one unknown variable. The 
difference in this case is that none of the distances are given in the assignment. There are therefore 
two unknown variables in the expression and one of the distances has to be assumed, by using the 
information about the total length of the seesaw. After discussion about this task, it is categorised as 
requiring local creative mathematical reasoning (LCR). The minor step in this case is to realise that 
one has to make an assumption of one of the distances in order to be able to solve the task, and this 
is regarded as demanding some intrinsic mathematical understanding. 

Task 6 (“Walking in water”) 
”You are walking out into the water at a beach with a stony bottom. In the beginning, it hurts very 
much under your feet when you are walking on the stones, but when the water gets deeper it starts 
to feel less. When the water reaches you up to the chest, the stones do not feel as painful anymore. 
Explain this.” 

 

Analysis of the assessment task- Answers and solutions: To solve this task the students are 
supposed to refer to Archimedes’ principle. The more of the body being under the water, the bigger 
is the buoyant force from the water. Assuming the body is in equilibrium at each step, the bigger the 
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buoyant force is, the smaller is the normal force from the stones, and consequently the pressure 
from the stones. Therefore, it hurts less when the water level reaches higher on the body. This 
relation can be argued for, using the formulas for Archimedes’ principle, for pressure and the 
equilibrium of forces. The mathematical area could then be considered involving formulas and 
proportionality. Following the solution proposal and the scoring rubric provided with the test, there 
is no need to use any mathematical relations/formulas to argue for the answer.  

Analysis of the assessment task- Task variables: The assignment is to explain why it does not hurt as 
much when you are in deeper water. No mathematical objects are given explicitly in the task. The 
situation refers to a real-life event, walking in the water. Bathing is a common situation referred to 
when discussing Archimedes’ principle. The depth of the water is also indicated in the assignment as 
important. 

Analysis of the textbooks and handbook – Answers and solutions: In the handbook, Archimedes’ 
principle is formulated with the words “The buoyant force on an object is equal to the weight of the 
displaced fluid” (p. 98). On the same page is the formula for pressure, p=F/A, given. In Ma3000AB 
there are plenty of examples and exercises on how to use formulas, e.g. on pages 28-30, and 
exercises on proportionality on pages 73 and 75, but not used for general comparison. In ErgoA 
Archimedes’ principle is formulated with words and as an expression (p. 171) and there is one 
example that relates volume to the buoyant force. 

Argumentation for the requirement of reasoning: When following the scoring rubric of what is 
demanded of a student to solve this task, there is no need to refer to the formulas and use them to 
argue for the given explanation. The student needs to mention Archimedes’ principle and that the 
buoyant force increases when the volume of the body in the water increases, but he/she does not 
need to explain why or show how the volume increase implies the force increase. They also have to 
mention something about how this increased buoyant force decreases the normal force, but 
according to the scoring rubric there is no need to use the relation for pressure to show why this 
decreased normal force makes it hurt less. The space given to write the answer on also indicates that 
a few lines are enough as an answer. After discussing this task and the minimum solution that is 
required of a student, it is decided that the reasoning is mainly physical and that mathematical 
reasoning is not necessary to solve this task. It is then categorised as solvable with non-mathematical 
reasoning, NMR. 

Results and Conclusion  
The main result shows that 76 % of the 209 analysed tasks required mathematical reasoning to be 
solved. A majority of these were solvable using imitative reasoning (IR) and the remaining ones 
required creative mathematical reasoning (CR) (Table 1).  

Table 4. Categorisation result, overview 

 
Number of tasks 

Non-mathematical 
reasoning (NMR) 

% 

Creative mathematical 
reasoning (CR) 

% 

Imitative reasoning 
(IR) 
% 

Physics A 103 21 33 46 
Physics B 106 26 38 36 
Total 209 24 35 41 
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The result also shows some differences in the categorisation with respect to the various courses 
Physics A and Physics B. There were slightly more non-mathematical reasoning (NMR) tasks in the 
Physics B tests than in the tests for Physics A and the same goes for the CR-tasks. A more distinct 
difference was notable among the IR-tasks, but here with the greater lot in Physics A tests (Table 4). A 
majority of the IR-tasks (78%) were solvable with familiar algorithmic reasoning (FAR) and the rest 
with guided algorithmic reasoning (GAR). The CR-tasks were separated into local creative 
mathematical reasoning (LCR) and global creative mathematical reasoning (GCR). In general, Physics 
B tests consisted of more GCR-tasks than Physics A tests while the amount of LCR-tasks was almost 
the same (Table 5). 

Table 5. Categorisation result, detailed. 

  
Number 
of tasks 

Nbr of 
NMR 

NMR 
% 

Nbr of 
FAR 

Nbr of 
GAR 

IR 
% 

Nbr of 
LCR 

Nbr of 
GCR 

CR 
% 

GCR 
% 

IR+LCR 
% 

Physics A 
Dec98 20 3 15 6 6 60 4 1 25 5 80 
Physics A 
May02 20 4 20 3 3 30 5 5 50 25 55 
Physics A 
Dec04 19 4 21 7 1 42 2 5 37 26 53 
Physics A 
May05 19 5 26 6 2 42 4 2 32 11 63 
Physics A 
Dec08 25 6 24 12 1 52 4 2 24 8 68 

Total 
Physics A 103 22 21 34 13 46 19 15 33 15 64 
Physics B 
May02 18 2 11 7 0 39 5 4 50 22 67 
Physics B 
May03 19 5 26 8 1 47 3 2 26 11 63 
Physics B 
May05 23 7 30 4 3 30 5 4 39 17 52 
Physics B 
Feb06 23 10 43 8 0 35 2 3 22 13 43 
Physics B 
April10 23 4 17 5 2 30 4 8 52 35 48 

Total 
Physics B 106 28 26 32 6 36 19 21 38 20 54 

Total 209 50 24 66 19 41 38 36 35 17 59 
 

When comparing tests from different years, the analysis showed a notable variation in the 
proportions of the different mathematical reasoning types. There is no consistency among the tests 
with respect to this analysis (Table 5). From the analysis it was possible to subdivide the tasks, 
initially categorised as LCR, into five subcategories depending on the nature of the minor creative 
step that was required (some are exemplified in the Data and Analysis section).  

1. If it is obvious that a familiar formula/relation is going to be used, but for reasoning about a 
situation with respect to the variables instead of calculating some values. 

2. If a familiar diagram is used in a slightly different way from what is earlier met in 
examples/exercises.   

3. If there is guidance in the handbook, but some intrinsic mathematical understanding is 
needed to be able to use this.   

4. If some values that have to be used in a familiar algorithm/formula depend on earlier 
calculations or have to be assumed. 
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5. If a solution requires that “two” simpler algorithms need to be combined in a new way. In 
these cases it is often not the mathematical aspect that is the difficulty; more often it is the 
physical understanding/knowledge that is the local step. Task 4 in the Data and Analysis 
section is a typical example of this subcategory.  

Table 6. LCR subcategories. 

Five 
subcategories 
of LCR 

1. If it is obvious 
that a familiar 
formula/relation is 
going to be used, 
but for reasoning 
about a situation 
with respect to the 
variables instead of 
calculating some 
values  
 
Number 

2. If a familiar 
diagram is used in 
a slightly different 
way from what is 
earlier met in 
examples/exercises  
 
 
 
 
 
Number 

3. If there is guidance in 
the handbook, but some 
intrinsic mathematical 
understanding is needed 
to be able to use this  
 
 
 
 
 
 
Number 

4. If some values that 
have to be used in a 
familiar 
algorithm/formula 
depend on earlier 
calculations or have to be 
assumed  
 
 
 
 
Number 

5. If a solution requires 
that “two” simpler 
algorithms need to be 
combined in a new way. 
In these cases it is often 
not the mathematical 
aspect that is the 
difficulty; more often it is 
the physical 
understanding/knowledge 
that is the local step 
Number 

Physics A 6 2 1 3 7 

Physics B 3 3 3 6 4 

Total 9 5 4 9 11 

Discussion and implications  
The fact that a majority of the tasks requires mathematical reasoning shows that the ability to reason 
mathematically is important when taking physics tests from the test bank. To be able to solve a 
major part of the tasks in a test, only imitative reasoning is not enough but creative mathematical 
reasoning is required. Different kinds of tasks require different kinds of reasoning. Tasks requesting 
analysing answers more often require CR, while tasks solvable with a calculation more often are 
categorised as IR-tasks. Choosing tasks with different properties will then influence the reasoning 
requirements. A comparison between national tests and teacher made tests in mathematics shows a 
significant difference in the mathematical reasoning requirements (Palm et. al., 2011). The 
subcategorisation of the LCR-tasks indicates that the mathematical reasoning requirements in the 
physics tests could depend on other properties of the physics tasks. To say more about how different 
task properties influence the reasoning requirements, further studies are needed. One purpose of 
the national tests is to help teachers interpret the syllabuses for the physics courses. Thus, a national 
test in physics could be assumed to cover most of the different domains in physics for upper 
secondary school in Sweden. The data from the analysis could then be used to investigate whether 
there are certain mathematical subject areas that are required to be able to solve physics tasks in the 
national tests. And further, to analyse if different subject areas requires different kinds of 
mathematical reasoning. Is there for example more tasks requiring CR if the subject area is calculus 
than if the area is algebra? As mentioned in the introduction, certain mathematical subjects could be 
troublesome for students when learning physics. In order to say more about what kind of 
mathematical reasoning requirements students are put in front of as well as what kind of 
mathematical reasoning they have the opportunity to practice when learning physics in school, more 
comprehensive studies of students’ learning environment have to be made.  

The total scores on the analysed tests vary between 38 to 48 points. The points are divided in “pass” 
points and “passed with distinction” points. To pass one of the tests 12 points are required and the 
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kind of the points does not matter. To get one of the higher grades, “Pass with distinction” or “Pass 
with special distinction”, the limit varies between 24 to 26 points for the different tests. Some of 
these points have to be “passed with distinction” points where the lower limit varies between five 
and seven points for the grade “Pass with distinction” and between 12 and 13 for the grade “Pass 
with special distinction”. The result then implies that it is possible to pass a test only using IR or IR 
together with NMR. In this analysis no concern to the different kinds of points has been taken when 
categorising the tasks. However, from the result that a third of the tasks require CR, it is reasonable 
to assume that to get a higher grade some kind of CR will often be required. The consistency in this 
conclusion is examined further in another study (Johansson, 2013b). This paper also includes an 
analysis of a possible dependence between how students succeed on tasks requiring CR if they have 
solved tasks requiring IR. To be able to say more about the relation between mathematical reasoning 
and learning in physics, a comparison between how students succeeded on tests in mathematics and 
on the test analysed in this study would be an interesting future study.  

This study does not have the intention to be an evaluation of the physics test from the National Test 
Bank. During the analysis, however, some observations with this character came up that seem 
important to comment on. The result shows that the analysed tests are aligned with the syllabuses 
and curriculums, in which the importance of mathematics is explicated (see Introduction subsection 
Mathematics in the syllabuses).  This result might be an expected result, as national tests provide 
assessment support to teachers and indicate how to interpret the syllabuses/curriculums. According 
to the fact that tests stress what is focused on, the necessity of mathematical reasoning is thus one 
aspect communicated to teachers and students. The possibility for students to solve two-fifths of the 
tasks in the tests with IR might influence them to focus on various standard procedures and on 
surface properties/similarities in tasks met in the physics courses, rather than learning the underlying 
mathematics/physics. In this respect the result increases the knowledge of what kind of 
mathematical reasoning that is communicated through the national tests in physics and how this 
might influence the focus of the students’ learning. 

It is clear that the analysing procedure cannot capture everything in a learning situation. One 
reduction is to equate the learning history with the textbooks. The actual number of IR-tasks could 
therefore be larger for some students than shown in the result; if, for example, the students have 
met additional tasks in the classroom. At the same time, categorising a task to be solvable with IR 
does not exclude a student from using a creative solution. The categorisation IR represents a 
minimum requirement under the assumption that a student has read the textbooks and gone 
through all of the examples and exercises. 

The analysis of NMR-tasks was often straightforward as exemplified in ”The Weightlifter (b)”- task  
(Data and Analysis section), but on a few occasions borderline cases occurred as shown in the 
“Walking in water”-task (Data and Analysis section). The same holds for the other categories as well. 
All borderline cases were discussed in the reference group and also several of the other tasks. The 
thorough description of the analysis process for six of the tasks is included to ensure a high reliability 
and validity for the method used. A limitation in the analysing procedure is revealed in the sub-
categorisation of the LCR-tasks, while the researcher’s experience as a teacher tells that several of 
these tasks have more in common with IR-tasks than with CR-tasks. Most tasks of types 2, 3 and 5 
(Table 6) are of this kind. Considering the IR-tasks together with the LCR-tasks belonging to 
subcategories 2, 3 and 5; then approximately two-thirds of the analysed tasks requiring 
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mathematical reasoning can be solved using these kinds of reasoning. At the same time, the omitting 
of experience could be considered a strength, as it prevents possible preconceptions to influence the 
result. 

As noticed in Table 5, a comparison between tests from different years showed a notable variation in 
the proportions of the different mathematical reasoning types. The fluctuation might be a 
consequence of the test developers’ use of another framework for categorising the tasks according 
to the goals in the syllabuses. On average there were more CR-tasks in the Physics B tests than in the 
tests for Physics A. Scrutinising this result for each test shows that this result varies over the years. 
This variation/fluctuation needs to be analysed further before making any general conclusions. If, 
however, the average result holds, then CR can be argued to be more important in Physics B. The 
syllabuses explicate that there are higher demands on the mathematical processing in Physics B, but 
say nothing of the kind of processing. Thus this mathematical processing might as well be IR. The 
same can be applied to a comparison of NMR-tasks for the various courses over different years. On 
average, there are more NMR-tasks in Physics B tests than in Physics A tests. If this result is general it 
could be considered consistent with the syllabuses, which state that students should develop a 
deeper understanding for some of the physical concepts in Physics B compared to Physics A. 
Describing the mathematical reasoning requirements in the physics tests can provide an alternative 
framework for national test developers to decide whether the tests assess what is intended 
according to the curriculum.  
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Paper II  
 

Mathematical Reasoning when solving 
physics tests 

Relations between grades and kinds of tasks solved and 
seeking dependence between different kinds of reasoning 

Helena Johansson 

Abstract 
In this two-folded study, the first part examines the relation between students’ grades and what kind 
of tasks, with respect to mathematical reasoning requirements, they have solved in national physics 
tests. The second part works as a pilot-study to try out if the Mantel-Haenszel procedure is an 
appropriate statistical method to answer questions about if there is a dependence between students’ 
success on different physics tasks that requires two different kinds of mathematical reasoning. The 
analysis shows that in three out of eight national physics tests, it is possible to get a higher grade 
than “Pass” without solving tasks that require students to consider intrinsic mathematical properties 
and produce new reasoning. The result reveals though, that it is uncommon that a student gets a 
higher grade without solving tasks that require the student to come up with not already familiar 
solutions. The pilot-study shows that the Mantel-Haenszel procedure is sensitive to the number of 
students each teacher accounts for. If there are not too few students, the procedure can be used. The 
result from the pilot-study indicates that there is a dependence between success on tasks requiring 
different kinds of reasoning. It is more likely that a student manages to solve a task that requires the 
produce of new reasoning if the student has solved a task that is familiar from before.        

Introduction 

Relations between learning physics and knowing mathematics 
Many scholars discuss the importance to understand how mathematics is used in physics and how 
students’ mathematical knowledge affects their learning of physics (e.g. Basson, 2002; Bing, 2008; 
Nguyen & Meltzer, 2003; Redish & Gupta, 2009).  diSessa (1993) notices that students who have 
studied physics and can solve a quantitative task in physics still can give an inconsistent qualitative 
analysis of the same task. A quantitative task refers to when the task is posed in explicitly 
quantitative terms and the solution can be attained through calculations using appropriate physics 
laws. A qualitative task refers to when the solution requires an analysis of the posed physical 
situation i.e. what will occur and/or why. According to Swedish National Agency for Education (2009) 
a common activity in physics classes is students using physics laws and formulas to solve routine 
tasks. The most common homework is to read in the textbook and/or to solve various tasks posed in 
the book, and sometimes to memorize formulas and procedures (ibid.). Redish (2003) state that 
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practice, in the meaning that students just solve various tasks, is necessary but not enough to get a 
deeper understanding of the underlying physics concepts. Students must learn both how to use the 
knowledge and when to use it. The same conclusion also holds for learning mathematics, shown by 
e.g. Schoenfeld (1985) in his study of how students become good problem solvers in mathematics; as 
well as by Lesh and Zawojewski (2007), who discuss how working with mathematical modelling 
develop students’ understanding and learning in mathematics.  Rote learning can be a main factor 
behind learning difficulties in mathematics (Lithner, 2008; Schoenfeld, 1992).  

During studies of how students are engaging in different mathematical activities, Lithner (2008) has 
gradually developed a framework for characterising students mathematically reasoning. The 
framework distinguishes between creative mathematical founded reasoning (CR) and imitative 
reasoning (IR). The former one refers to a reasoning that is anchored in intrinsic mathematical 
properties and that includes some novelty to the reasoner. If instead the anchoring is in surface 
properties and the reasoning consists of remembering an answer or following a process step by step, 
it is IR. There has been a discussion in the mathematical educational research society whether 
procedural knowledge should be considered only as superficial and rote learned or viewed from a 
wider perspective (Baroody, Feil & Johnson, 2007; Star, 2007). There is an agreement that procedural 
knowledge is important, but not enough, when students learn mathematics (Baroody et al., 2007; 
Gray & Tall, 1994; Sfard, 1991; Star, 2007). However, there is also an argumentation about if deep 
procedural knowledge could exist without involvement of conceptual knowledge (Baroody, Feil & 
Johnson 2007; Star, 2005, 2007).  In the description of the framework used for characterising 
required mathematical reasoning, Lithner (2008) discusses different aspects of procedures and 
concepts. Although the definitions of the reasoning categories do not include references to 
procedural or conceptual knowledge, one could assume some relations between CR and conceptual 
knowledge on one hand and IR and procedural knowledge on the other hand.  

The studies in this paper are based on the assumption that students’ ability to reason mathematically 
affects how they succeed to solve tasks in physics.  
 

Physics in the Swedish school 
There are mainly two different physics courses in the Swedish upper secondary school. Physics A that 
is compulsory for all natural science and technology students and Physics B that is an optional 
continuation. The final grade a student is awarded after completion of a physics course depends on 
the achieved level of proficiency (Swedish National Agency for Education, 2000a, 2000b). The grades 
vary between Not Pass (IG), Pass (G), Pass with distinction (VG) and Pass with special distinction 
(MVG). The descriptions in the syllabuses of the different grade levels are quite vague and the 
intention is that the syllabuses should be processed and interpreted locally at the schools. To 
accomplish equivalent assessment in physics, assessment supports are provided by the Swedish 
National Agency of Education. One of these supports is the National Test Bank in Physics to which 
teachers can get access after they have registered and received a password. Once logged in, teachers 
can download course tests for both Physics A and Physics B. After a test is used, the teachers are 
intended to report back students’ results on the test to the Test Bank. A majority of all registered 
teachers use the provided tests as a final exam in the end of the physics courses (Swedish National 
Agency for Education, 2005). The character and the design of the tasks in national tests stress what is 
covered in the taught curriculum. The tests guide teachers’ interpretation of the syllabuses and by 
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extension influence what students focus on (Ministry of Education and Research, 2001; Swedish 
National Agency for Education, 2003).  

Conceptual framework  
The definition of mathematical reasoning and of the different reasoning categories used to analyse 
and categorise physics tasks in the author’s previous paper/study are developed by Lithner (2008). 
This framework is also used in this paper since the categorised physics tasks serve as a basis for the 
conducted analyses. Reasoning is defined as ”the line of thought adopted to produce assertions and 
reach conclusions in task solving” (Lithner, 2008 p. 257). Mathematical reasoning refers to a product 
of separate reasoning sequences where the justification for the choice of the next sequence is 
mathematically founded. The mathematical foundation of the reasoning can either be superficial or 
intrinsic. Superficial and intrinsic refer to the relevance of the mathematical argument that is used. 
An object’s mathematical properties are of different relevance in different contexts e.g. what type of 
problem one is trying to solve. This leads to a distinction between surface properties and intrinsic 
properties. The former ones have little relevance in the actual context and give rise to superficial 
reasoning, and the latter ones are central and the ones to be regarded (ibid. pp. 260-261).  

Creative mathematically founded reasoning 
Creativity is an expression often used in different contexts and without an unequivocal definition (for 
a discussion see Lithner (2008, pp. 267-268)). For the definitions of the different kinds of reasoning 
the perspective of Haylock (1997) and Silver (1997) is adopted. This implies that creativity is seen as a 
thinking process that is novel, flexible and fluent (Lithner, 2008). 
 
Creative mathematical founded reasoning5 (CR) fulfils all of the following criteria. (Lithner, 2008, 
p.266) 

i. Novelty. A new (to the reasoner) reasoning sequence is created or a forgotten one is 
recreated.  

ii. Plausibility. There are arguments supporting the strategy choice and/or strategy 
implementation motivating why the conclusions are true or plausible.  

iii. Mathematical foundation. The arguments are anchored in intrinsic mathematical properties 
of the components involved in the reasoning. 

Imitative reasoning 
Imitative reasoning (IR) is divided into memorised reasoning and algorithmic reasoning. The 
arguments that motivate the chosen solution method (i.e. the reasoning) could be anchored in 
surface mathematical properties.  

Memorised reasoning (MR) fulfils the following conditions (Lithner, 2008, p. 258)  

i. The strategy choice is founded on recalling a complete answer. 
ii. The strategy implementation consists only of writing it down. 

If some kind of calculations is required to solve the task, there is often no use in remembering an 
answer. Instead it is more suitable to recall an algorithm. The term algorithm is here used in a wide 

 
5 Henceforward called creative mathematical reasoning. 
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sense and refers to all the procedures and rules that are needed to reach the conclusion to a specific 
type of tasks, not only the calculations.  

Algorithmic reasoning (AR) fulfils the following conditions (ibid. p.259) 

i. The strategy choice is to recall a solution algorithm, which if it is followed step by step will 
give the right answer without any demands of novelty.  

ii. The remaining parts of the strategy implementation are trivial for the reasoner and just a 
careless mistake can obstruct the reaching of an answer. 

Local and global creative mathematical reasoning 
Lithner (2008) introduces a refinement of CR into local CR (LCR) and global CR (GCR) that captures 
some significant differences between tasks categorised as LCR and GCR. This differentiation has been 
more elaborated by other scholars that have used the framework e.g. Boesen, Lithner and Palm 
(2010) and Palm, Boesen and Lithner (2011). The difference between LCR and GCR is that in LCR, the 
reasoning is mainly MR or AR but contains a minor step that requires CR. If instead there is a need for 
CR in several steps, it is called GCR, even when some parts contains AR and/or MR. Important to 
stress is that as soon as CR is involved there has to be some understanding of the intrinsic 
mathematical properties in the task.  

Non-mathematical reasoning 
Because it was physics tasks that were analysed an additional category were defined, non-
mathematical reasoning (NMR), i.e. tasks that can be solved by only using physics knowledge. Physics 
knowledge refers to relations and facts that are discussed in the physics courses and not in the 
courses for mathematics according to the syllabuses and textbooks. One example is that angle of 
incidence equals angle of reflection. In the same way, a solution that requires mathematical 
reasoning refers to mathematics taught in courses at upper secondary school or assumed already to 
be known by the students according to the curriculums. 

Research questions 
As an approach to the assumption that students’ ability to reason mathematically affects how they 
succeed to solve tasks in physics, this study analyses the mathematical reasoning requirements 
students are put in front of when solving tasks in physics tests. The author therefore used Lithner’s 
(2008) distinction of mathematical reasoning, IR and CR, in a previous study (Johansson, 2013a) that 
addressed the question “what are the mathematical reasoning requirements to solve physics tasks in 
physics tests from the Swedish national test bank?” The result showed that students must use some 
kind of mathematical reasoning to solve three-fourth of the tasks in a test and that one-third of the 
tasks required creative mathematical reasoning. One approach to examine the assumption further is 
to combine the previous result with data representing the practice. In this paper students’ scores on 
the previously categorised tasks are, together with their grades on the tests, used as data.  Each 
student’s grade is compared to what kind of tasks respective student has received scores for. 
Moreover, students’ scores are used as a measure of their success on respective tasks. A comparison 
of how students succeed on different kinds of tasks (i.e. tasks requiring IR or GCR) will hopefully 
answer if there is a dependence between IR and GCR on physics tasks, and if so, of what kind. This 
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paper consists of two parts that both use the definitions in the conceptual framework. The purpose 
of the parts are though some different. The first part addresses the following question: 
  Is it possible for a student to get one of the higher grades without using creative 

mathematical reasoning, and if so, how common is it?   

The purpose of the second part is mainly to examine if the used statistical test method is appropriate 
to use to answer the following question:  

 Does a student’s success on tasks categorised as requiring global creative mathematical 
reasoning depend on the student’s success on tasks requiring imitative reasoning? 

In this respect the purpose of the second part is to work as a pilot study. If the test method works out 
well it could be used for further analyses of relations between success on IR- and CR/GCR-tasks on 
mathematics tests that have been categorised according to Lithner’s (2008) conceptual framework.  

Because the characters of the two questions are of different kinds, two different methods have been 
used and the input data differ in some respect. In the Method section below, there will first be a 
description of the different data that have been used and after that follows the outline of the 
respective method. 

Methods 

Input data 
In a study by Johansson (2013a), tasks in physics tests from the National Test Bank have been 
categorised according to the conceptual framework above. The results from that study are, in 
addition with student data, used as data in this paper. The student data are used by permission from 
Department of Applied Educational Science at Umeå University, the department in charge of the 
National Test Bank in Physics. Student data come as excel sheets, one sheet for each test. The sheets 
contain information about students’ scores on each task separated in G- and VG-scores; students’ 
total score on the tests; a calculated grade on the tests; the program each student attend as well as 
an ID-number of their respective teacher.  No names of the students are present in the sheets, 
instead each student has got an ID-number. The IDs for both the teachers and the students are 
unidentifiable for anyone outside the Department of Applied Educational Science at Umeå 
University, so data could be considered anonymous. The number of student data for each test varies 
from 996 to 3666.   

Examples 
Below are three examples of tasks from one of the physics tests6. The first, 3a, were categorised as 
solvable with imitative reasoning. Similar tasks are hence forward called IR-tasks. The second 
example, 3b, illustrates a task categorised solvable by only using physics, that is no mathematics 
were required. Tasks like this are called NMR-tasks. The last example is of a GCR-task, i.e. tasks 
requiring global creative mathematical reasoning to be solved. In the same way will tasks requiring 
LCR be called LCR-tasks and tasks requiring either LCR or GCR will be called CR-tasks. The outline of 
all tasks in a test begins in the same way; first is the number of the task in the test given and after 

 
6 The original size of the physics tests is A4, i.e. the size of the examples below is originally √2 times larger if this 
paper is read on A5 format. 



  

65 
 

that, enclosed in brackets, the task’s number in the National Test Bank. On the next line are the 
maximum scores for the task given. As mentioned above, the scores are divided into two different 
categories, G-scores and VG-scores. The maximum scores for each category are separated with a 
slash, for example 2/0 tells that a student can get a maximum of two G-scores and zero VG-scores on 
that particular task. In the same way, 1/1 tells that the maximum is one G-score and one VG-score. If 
the task consists of subtasks: a, b, etc.; the total scores for the subtasks are separated with commas.  
 
------------------------------------------------------------------------------------------------------------------------- 
Task no. 3 (1584) 
2/0, 1/0 
    
A weightlifter is lifting a barbell that weighs 219 kg. The barbell is lifted 2.1 m up from the floor 
in 5,0 s. 
 
 
 
 
 
 
c) What is the average power the weightlifter develops on the barbell during the lift? 

 
 

d) What is the average power the weightlifter develops on the barbell when he holds it 
above the head during 3.0 s? 

 

 

Short account for your answer: 

Short account for your answer: 
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------------------------------------------------------------------------------------------------------------------------- 
Task no. 10 (1588) 
1/1 
    
A lens of a digital camera has a focal length of 8.0 mm. The lens’ distance to the film plane may 
vary between 8.0 mm and 10.0 mm. 

 

Which is the closest distance you can take a photo of an object and still get a sharp image? 

------------------------------------------------------------------------------------------------------------------------- 
 

Part one 
In order to answer the first research question, eight different physics tests from the Swedish National 
Test Bank in Physics were used. Together the tests comprised 169 categorised tasks. Students’ grades 
on the tests and their scores on the categorised tasks were also used. The availability of student data 
decided which tests that were used in the analysis. As mentioned above, grades vary between IG, G, 
VG and MVG. For each test there are certain score levels the students need to attain to get a certain 
grade. To get the grade MVG, students need to fulfil certain quality aspects besides the particular 
score level. To decide if it is possible for a student to get one of the higher grades without using any 
kind of CR, each test is first analysed separately. This first analysis consists in comparing the score 
level for each grade with the maximum scores that are possible to obtain, given that the student only 
has solved (partly or fully) IR- and/or NMR- tasks. The available student data do not give any 
information about which of the qualitative aspects required for MVG the students have fulfilled, but 
the data sheets include students grades, thus MVG can be included in the analyses as one of the 
higher grades. After analysing if it is possible at all to receive the grades VG or MVG without solving 
any CR-tasks, the second analysis started. Now students’ actual results on the categorised tasks for 
those particular tests are summed up. The proportion of students who only got scores from IR- and 
NMR-tasks is then graphed with respect to the different grades. 

Part two 
To answer the second research question, the Mantel-Haenszel (MH) procedure has been chosen as 
statistical test method. As stated above, the main purpose of the second part in this paper is to try 
out and decide if the MH-procedure is appropriate to use for answering this kind of question. Hence 
this part is a pilot study. Before describing data used in this second part and outlining the method, a 
description of the MH-procedure will be given. 

The Mantel-Haenszel procedure 
The MH-procedure was originally developed for data analyses from retrospective studies in the 
clinical epidemiology area. The purpose of the MH-procedure was to test if there were any relations 
between the occurrence of a disease and some factors. The disease could for instance be lung cancer 
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and one factor could be cigarette smoking (Mantel & Haenszel, 1959). A retrospective study can be 
performed on already collected data and does not require as big sample size as a forward study (also 
called prospective study) does. In a retrospective study of a disease one looks for unusually high or 
low frequency of a factor among the diseased persons, while in a forward study it is the occurrence 
of the disease among persons possessing the factor that is looked at (ibid.). The calculations involved 
in the MH-procedure are quite simple and this is probably a contributing factor to that the method is 
commonly used in various areas today e.g. epidemiology (Rothman, Greenland & Lash, 2008), 
biology/biological statistics (McDonald, 2009) and social/educational sciences (Fidalgo & Madeira, 
2008; Guilera, Gómez-Benito & Hidalgo, 2009; Holland and Thayer, 1988; Ramstedt, 1996). One of 
the most common uses of the MH-procedure in educational studies seems to be for detecting 
existence of differential item functioning (DIF). DIF exists if people with the same knowledge/ability, 
but belonging to different groups, have different probabilities to give the right answer to an 
item/task. Ramstedt (1996) used a modified version of the MH-procedure to analyse if there were 
differences between how boys and girls succeeded on national physics tests depending on their sex, 
according to their personal identity number. According to Ramstedt, Holland and Thayer (1988) were 
the first ones to use the MH-procedure to detect DIF. 

To use the MH-procedure, data should first be stratified into 2x2 contingency tables. In these tables 
the rows and the columns represent the two nominal variables that will be tested for dependence. 
The variable that is placed in the rows is the one that is tested whether it explains/affects the 
outcome of the variable placed in the columns. The different contingency tables represent a third 
nominal variable that identifies the repeat. The two nominal variables could for example be: a 
disease and a factor; a plant and habitats; group belonging and success on tasks. Examples of the 
repeat variable are different medical centers, different seasons, different teachers etc.  

Table 7: Contingency table for repeat i. 

Table i Y = 1 Y = 0 Totals 

X = 1 ai bi ni1 

X = 0 ci di ni0 

Totals mi1 mi0 ni 
 
In Table 7, X and Y represent the two nominal variables. Both variables are coded by the values 0 and 
1 for the respective object included in the study. Belonging to the group of diseased persons might 
then be represented by X = 1 and not being diseased with X = 0. In the same way, the occurrence of a 
factor may be represented by Y = 1 and non-existence of the factor with Y = 0. The letters ai, bi, ci and 
di denote the frequencies for respective occurrence and ni = ai + bi + ci + di. A diseased person 
possessing the factor will then be one of those contributing to the frequency ai. The probability p for 
an event is estimated by the relative frequency p�. For example, the relative frequency for the event 
X = 1 and Y = 1 is p�  = ai/ni.  
 
The MH-procedure includes an estimation of the common odds ratio, 𝜃𝜃�𝑀𝑀𝑀𝑀, for the different 
contingency tables. Odds, O, is defined as the probability p for an event divided by the probability for 
the same event not to occur i.e. O=p/(1-p). Odds ratio, 𝜃𝜃, is defined as the ratio between the 
different odds for the event with respect to the different row variables, that is, keep X fixed in the 
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table. From above follows that the odds for X = 1 and Y = 1 is estimated by ai/bi and the odds for X = 0 
and Y = 1 is estimated by ci/di. This gives that the odds ratio for contingency table i is estimated by 

𝜃𝜃�𝑖𝑖 =
a𝑖𝑖

b𝑖𝑖�
c𝑖𝑖

d𝑖𝑖�
=  

a𝑖𝑖d𝑖𝑖
b𝑖𝑖c𝑖𝑖

. 

The common odds ratio calculated in the MH-procedure is defined as 

𝜃𝜃�𝑀𝑀𝑀𝑀 =  
∑ a𝑗𝑗d𝑗𝑗/n𝑗𝑗𝑗𝑗

∑ b𝑗𝑗c𝑗𝑗/n𝑗𝑗𝑗𝑗
=
∑ 𝑤𝑤𝑗𝑗𝜃𝜃�𝑗𝑗𝑗𝑗

∑ 𝑤𝑤𝑗𝑗𝑗𝑗
 , 

where 𝜃𝜃�𝑖𝑖 is the odds ratio for table i and 

𝑤𝑤𝑖𝑖 =
𝑏𝑏𝑖𝑖𝑐𝑐𝑖𝑖
𝑛𝑛𝑖𝑖

 

is the weight associated to 𝜃𝜃�𝑖𝑖. The summations run over all contingency tables, i.e. j = 1,…,k, where k 
is the number of contingency tables. Thus 𝜃𝜃�𝑀𝑀𝑀𝑀 is a weighted average of the individual odds ratios. 
The assumed null hypothesis, H0, is that there is no dependence between the variables X and Y, i.e. 
𝜃𝜃𝑀𝑀𝑀𝑀 = 1.  
 
The most important step in the procedure is the calculation of a MH test statistic, which tells if 𝜃𝜃�𝑀𝑀𝑀𝑀 
differs sufficiently from 1 so that H0 can be rejected. The most commonly used test statistic, χ2

MH, is 
approximately chi-square distributed, and is compared to a chi-square distribution with one degree 
of freedom (Mantel & Haenszel, 1959; Ramstedt, 1996; Mannocci 2009; McDonald, 2009).  The 
definition of χ2

MH is 

𝜒𝜒2𝑀𝑀𝑀𝑀 =  
(|∑ a𝑖𝑖 − ∑ 𝐸𝐸(𝑖𝑖 a𝑖𝑖)𝑖𝑖 | − ½)2

∑ 𝑉𝑉𝑉𝑉𝑉𝑉(a𝑖𝑖)𝑖𝑖
 , 

where 𝐸𝐸(a𝑖𝑖) = 𝑛𝑛𝑖𝑖1𝑚𝑚𝑖𝑖1 𝑛𝑛𝑖𝑖�  is the expected value for a𝑖𝑖 under H0 and 
 

𝑉𝑉𝑉𝑉𝑉𝑉(a𝑖𝑖) =
𝑛𝑛𝑖𝑖1𝑛𝑛𝑖𝑖0𝑚𝑚𝑖𝑖1𝑚𝑚𝑖𝑖0

𝑛𝑛𝑖𝑖2(𝑛𝑛𝑖𝑖 − 1)
 

is the variance for a𝑖𝑖 (Mantel & Haenszel, 1959).  
 
Instead of χ2

MH, a test statistic, ZMH, that is approximately normal distributed can be used (McCullagh 
& Nelder, 1989). The advantage of using ZMH is that the direction of a possible dependence is 
detected. Therefore this test statistic is used in the study in this paper.  The definition of ZMH is 

𝑍𝑍𝑀𝑀𝑀𝑀 =  
∑ {a𝑖𝑖 − 𝐸𝐸(a𝑖𝑖)}𝑖𝑖 − ½

𝜎𝜎∑ {a𝑖𝑖−𝐸𝐸(a𝑖𝑖)}𝑖𝑖

 , 

where 𝐸𝐸(a𝑖𝑖) is as above and 

𝜎𝜎∑ {a𝑖𝑖−𝐸𝐸(a𝑖𝑖)}𝑖𝑖 = �𝑣𝑣𝑉𝑉𝑉𝑉(a𝑖𝑖 − 𝐸𝐸(a𝑖𝑖)) = �
∑ {𝑛𝑛𝑖𝑖1𝑛𝑛𝑖𝑖0𝑚𝑚𝑖𝑖1𝑚𝑚𝑖𝑖0}𝑖𝑖

𝑛𝑛𝑖𝑖2(𝑛𝑛𝑖𝑖 − 1)
 

is the standard deviation of a𝑖𝑖 − 𝐸𝐸(a𝑖𝑖) (McCullagh & Nelder, 1989). The value ½ that is subtracted in 
the numerator for each of the statistics is a continuity correction value (Mantel & Haenszel, 1959; 
McCullagh & Nelder, 1989).  

Method 
To answer the second research question, if there is a dependence between students’ success on IR-
tasks and how they succeed on GCR-tasks, the MH-procedure was first used on one randomly chosen 
pair of IR/GCR-tasks from one of the eight physics tests. For each of the chosen tasks, students’ 
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scores were collected from the data sheet, as well as the ID number of respective student’s teacher. 
The two different categories of tasks, IR and GCR, are the two nominal variables tested for 
dependence. To control for a possible influence from students different teachers, teacher is chosen 
as the variable that identifies the repeat. One influence may be on the scoring of the tasks, since the 
scoring involves some interpretation of the scoring rubrics and could thus result in some differences 
in how to score a specific answer. It is assumed that the individual teacher is consistent in the scoring 
of his/her students’ solution to respective task. Another influence from the teachers is that different 
teachers show different examples on the blackboard, which influence what become familiar 
solutions to students. There can also be a difference in what kind of mathematical reasoning 
different teachers give their students the possibility to practice on. Some teachers may be more 
focused on working with creative mathematical reasoning than others.  

To see if there was any consistency in the result from the MH-procedure, more tasks were chosen 
from the eight tests.  The number of GCR tasks varied between two and six for the different tests, so 
it was decided to choose two GCR tasks from each test. The GCR tasks were randomly selected as far 
as possible. It was further decided to test how the success on these two chosen GCR-tasks depended 
on success on two of the simpler IR-tasks and two of the harder IR-tasks on the same test. The 
difference between a simpler and a harder IR-task turned out to depend mainly on how many steps 
that were needed in the solution algorithm. For a simpler IR-task, the solution consisted mostly of 
one step; and for a harder IR-task, there were often three or more steps to remember. The number 
of IR-tasks varied between six and nine in the different tests. Each GCR-task was then tested for 
dependence against all four of the IR-tasks.   

MATLAB was used to arrange the contingency tables needed in the MH-procedure. The rows in a 
contingency table represent the students who have succeeded (1) and not succeeded (0) on the 
particular IR-task. The columns represent in the same way the students who have succeeded (1) and 
not succeeded (0) on the GCR-task. Success on a task is defined as to have solved the task 
completely, i.e. to have attained the maximum score. For each entry, MATLAB calculated the number 
of students that fulfilled that particular combination e.g. ai is the number of students who have 
succeeded on both the IR-task and the GCR-task. The row and column totals were summed up, as 
well as the total number of students for teacher i.  

Table 8: Contingency table for IR and CR with respect to teacher i. 

Teacher i GCR (1)  GCR (0) Totals 
IR (1) ai bi ni1 
IR (0) ci di ni0 
Totals mi1 mi0 ni 

 

After this, ZMH, the approximately normal distributed test statistic, was calculated for every pair, i.e. 
64 test statistics were calculated. The obtained value was compared to critical values for a two-tailed 
test and 5 % significance level, to decide whether H0 can be rejected or not. For a table to be 
included in the calculation of the test statistic, each of the calculated expected values has to be 5 or 
more. Since this is a pilot study, no correction for the multiple comparisons was done (cf. McDonald, 
2009).   
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Analyses and results 
In this section, the results from the analyses are presented. The outline follows the outline in the 
previous section and is divided in two parts, one for each of the research questions. 

Part oneTable 9 shows how the scores, possible to obtain on each of the eight tests that were 
analysed, are distributed among the reasoning categories IR and NMR. The table also includes the 
levels for the grades G, VG and MVG. The notation for the scores follow the convention described 
above, i.e. G/VG. 

Table 9: Analysis of the distribution of G and VG scores among IR- and NMR-tasks. 

Test Max 
score 

Min 
required 

score 
for G 

Min required 
score for VG 

Min required 
score for MVG 

Max 
scores for 
IR-tasks 

Max scores 
for NMR-

tasks 

Max score 
possible 

without CR-
tasks 

Physics A 
May 02 

26/17 12 25 (with at least 
6 VG scores) 

25 (with at least 
12 VG scores) 

12/0 3/3 18 (with 3 VG) 

Physics A 
Dec 04 

23/17 12 24 (with at least 
5 VG scores) 

24 (with at least 
12 VG scores) 

14/3 3/3 23 (with 6 VG) 

Physics A 
May 05 

22/16 12 24 (with at least 
6 VG scores) 

24 (with at least 
12 VG scores) 

12/3 8/4 27 (with 7 VG) 

Physics B 
May 02 

23/25 12 27 (with at least 
7 VG scores) 

27 (with at least 
13 VG scores) 

11/4 2/0 17 (with 4 VG) 

Physics B 
May 03 

23/20 12 25 (with at least 
6 VG scores) 

25 (with at least 
13 VG scores) 

12/8 5/1 26 (with 9 VG) 

Physics B 
May 05 

22/22 12 25 (with at least 
6 VG scores) 

25 (with at least 
12 VG scores) 

8/5 7/2 22 (with 7 VG) 

Physics B 
Feb 06 

22/21 12 25 (with at least 
7 VG scores) 

25 (with at least 
13 VG scores) 

11/7 9/9 36 (with 16 VG) 
 

Physics B 
April 10 

24/20 12 25 (with at least 
6 VG scores) 

25 (with at least 
12 VG scores) 

9/4 4/1 18 (with 5 VG) 

 

In three of the eight tests, highlighted above, it is possible to get the grade VG by solving tasks not 
requiring any CR. In one of the tests, Physics B from February 2006, it is with respect to score level 
possible to obtain the grade MVG by solving only IR- and NMR-tasks. The analysis does not reveal 
anything about if the requirements of the qualitative aspects for MVG are possible to fulfil by solving 
only these kinds of tasks. The proportion of students who only had solved IR- and/or NMR-tasks was 
graphed with respect to their grades on the tests (see the figures below). It turned out that it is not 
frequently occurring that a student gets a higher grade than G by only solving these kinds of tasks. In 
the test for Physics A from 2005, only 0.17 % of the students got a higher grade (Figure 2); and in the 
Physics B test from 2003 none of the students got higher grades than G (Figure 3). The Physics B test 
from 2006 seems to be an exception though, since 25% of the students taking this test got a VG and 
17% got a MVG. The analysis of how the scores are distributed among the reasoning categories for 
the different tests shows that the Physics B test from 2006 contains a lot more scores in the NMR 
category than any of the other tests (see Table 9 ). The total scores possible to obtain by only solving 
NMR-tasks are 18; nine of these are VG-scores, which is more than enough to fulfill the requirement 
for a VG (minimum 7 VG).   
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Figure 2: Proportion of students who only solved IR- and NMR-tasks with respect to the different grades for 
the Physics A test in 2005. 

 

Figure 3: Proportion of students who only solved IR- and NMR-tasks with respect to the different grades for 
the Physics B test in 2003. 

 

Figure 4: Proportion of students who only solved IR- and NMR-tasks with respect to the different grades for 
the Physics B test in 2006. 
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Below is a table of the proportion of the scores among the different reasoning categories. The result 
shows that about one-fifth of the scores could be obtained by solving tasks not requiring 
mathematical reasoning. It is also revealed that the majority of the scores are among the CR-tasks, 
but the difference from the proportion of scores among IR-tasks is not very big. 

Table 10: Proportions of scores in the reasoning categories with respect to the physics courses. 

Test % max IR scores  % max NMR scores  % max CR scores 
Physics A 
May 02 

28  14  58 

Physics A 
Dec 04 

43  15  42 

Physics A 
May 05 

39  32  29 

Physics A 37 20 43 
Physics B 
May 02 

39  5  56 

Physics B 
May 03 

47  14  39 

Physics B 
May 05 

30  20  50 

Physics B 
Feb 06 

42  42  16 

Physics B 
April 10 

30  11  59 

Physics B 38 18 44 

Part two 
The Mantel-Haenzsel procedure resulted in 64 calculations of the MH-test statistic ZMH. The critical 
values for a two-sided Z test with respect to 5% significance level are ±1.96, i.e. if the calculated value 
is greater than 1.96 or lesser than -1.96, H0 can be rejected.    

Table 11: Value of ZMH for each MH-test in respective Physics test 

 SimpleIR-1 
-> GCR-1 

SimpleIR-1 
-> GCR-2 

SimpleIR-2 
-> GCR-1 

SimpleIR-2 
-> GCR-2 

HardIR-1 
-> GCR-1 

HardIR-1 
-> GCR-2 

HardIR-2 
-> GCR-1 

HardIR-2 
-> GCR-2 

PhysicsA 
May02 

5.8337 7.2634 5.6848 6.0494 9.3400 9.7978 8.2621 13.8206 

PhysicsA 
Dec04  

8.1920 5.7853 9.1352 12.2009 9.4944 10.1191 6.6884 11.3628 

PhysicsA 
May05 

8.8723 8.7645 4.9397 3.5521 15.7600 17.0689 11.9232 10.1675 

PhysicsB 
May02 

6.4192 4.4152 6.9744 5.8487 12.6614 10.7029 14.7344 8.5469 

PhysicsB 
May03 

  8.5434 4.0272 10.5086 8.3243 9.5079 5.2267 

PhysicsB 
May05 

13.3128 6.7442 11.2680 10.0132 14.3362 20.9337 7.6338 12.1267 

PhysicsB 
Feb06 

8.6249 10.0267 6.3660 9.9268 7.9677 10.0952 8.3594 11.8029 

PhysicsB 
April10 

      2.8897  
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If the condition regarding expected value is not fulfilled for any of the contingency tables in the MH-
procedure, the calculation does not give any value for ZMH. This is represented by empty entries in 
Table 11 above. It can be seen in the table that the expected value was less than 5 for all teachers in 
most of the calculations for the test Physics B from April 10. The result shows that all of the 43 
calculated ZMH are greater than 1.96, which indicates that if a student succeeds on the IR-task it is 
more likely that he/she will succeed on the GCR-task. It is further seen that the ZMH values are greater 
for most of the pairs Hard IR/GCR-tasks than for the Simple IR/GCR-tasks. This indicates a stronger 
dependence between success on a Hard IR-task and success on a GCR-task, than the dependence 
between success on a Simple IR-task and success on a GCR-task. 

To be able to say more about the calculations of the ZMH, and eventually the appropriateness of the 
MH-procedure, it was examined how many different teachers, (contingency tables), that fulfilled the 
condition regarding expected value. It is seen in Table 12 that some of the calculations of the ZMH are 
based on results from very few teachers, e.g. in Physics B from May 03. Few contingency tables in the 
calculations of ZMH can increase the risk of Type II errors, i.e. that H0 is not rejected although it is 
false.  

Table 12: Number of groups/teachers (i) that fulfill E ≥ 5 (under H0) for each MH-test in respective physics 
test. 

 SimpleIR-
1 -> CR-1 

SimpleIR-
1 -> CR-2 

SimpleIR-
2 -> CR-1 

SimpleIR-
2 -> CR-2 

HardIR-1 
-> CR-1 

HardIR-1 
-> CR-2 

HardIR-2 
-> CR-1 

HardIR-2 
-> CR-2 

PhysicsA 
May02 

15 17 4 6 18 20 19 21 

PhysicsA 
Dec04  

6 7 15 16 21 22 12 10 

PhysicsA 
May05 

17 14 7 5 20 16 28 22 

PhysicsB 
May02 

8 3 13 5 12 5 11 3 

PhysicsB 
May03 

0 0 7 2 4 1 7 2 

PhysicsB 
May05 

20 8 32 14 24 6 35 14 

PhysicsB 
Feb06 

14 12 11 12 11 10 14 13 

PhysicsB 
April10 

0 0 0 0 0 0 2 0 

 
The expected value in each entry in a contingency table has to be 5 or greater; therefore number of 
students for each teacher has to be at least 20. Number of different teachers/tables and the total 
number of students were calculated for each of the tests.  
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Table 13: Number of teachers and students for each physics test. 

 #Different Teachers Tot #Students 

PhysicsA 
May02 

44 1900 

PhysicsA 
Dec04  

61 2198 

PhysicsA 
May05 

56 2612 

PhysicsB 
May02 

79 3666 

PhysicsB 
May03 

74 2734 

PhysicsB 
May05 

101 3454 

PhysicsB 
Feb06 

41 1458 

PhysicsB 
April10 

34 996 

 
Table 13 reveals that the number of students in Physics B from April 2010 is quite few compared to the 
other tests. In Table 11 it is seen that only one ZMH is obtained for this particular test, few students on 
too many teachers is one indication that the MH-procedure might not generate any reliable result, or 
any result at all.   

Discussion and implications 
The analyses from part one show that it is possible to receive a higher grade than G by using only IR 
and NMR on three out of eight tests. Comparing this result with student data reveals that not using 
any CR and still receive a higher grade only occurs on one of the eight tests. This particular test is, 
compared to the other tests, slightly different with respect to how the scores are distributed among 
the reasoning categories. Further analysis of the test shows that tasks regarded as MVG-tasks are all 
in the NMR category, i.e. tasks where it is possible to show the qualitative aspects required for MVG. 
This may be an explanation to the higher frequency of students receiving VG and MVG by using only 
IR and NMR, compared to the other tests. The analysis of the tests also shows that it is impossible to 
pass the test without solving any tasks requiring mathematical reasoning in six of the eight tests. 
These results strengthen the outcome from the previous study that creative mathematical reasoning 
is important when learning physics in upper secondary (Johansson, 2013a).  

The results from part two shows that the MH-procedure can be used to determine if there is a 
dependence between students’ success on tasks requiring different kinds of mathematical reasoning. 
If the MH-procedure shall give reliable results, one has to control that there are not too few students 
for each of the teachers included. Too few students can result in that the condition regarding the 
expected value is not fulfilled and thus result in too few contingency tables included in the 
calculation of the MH test statistic, which eventually may result in incorrect conclusions. Instead of 
calculating the total number of teachers and students, as was done in this pilot study, calculations of 
the number of students for each of the teachers is suggested to be done if the MH-procedure is going 
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to be used in further studies. Correction for the multiple testing is also required if results in further 
studies shall be reliable. Although correction for multiplicity has not been done in this study, the 
result from the MH-procedure is a significant indication on a positive dependence between success 
in IR-tasks and GCR-tasks. According to the above discussion about similarities between IR – 
procedural knowledge and CR – conceptual knowledge, the acquired result can indicate a 
dependence between procedural and conceptual knowledge.  

Viewing the physics tests from the National Test bank as an extension of the national curriculum, one 
can assume that students’ results on the tests are a measure of their knowledge in physics. The 
scores and grade on a test should help teachers decide which achievements a student has attained 
and the level of the achievements. In this respect, students’ grades on the physics tests could be 
viewed as a measure of their attained knowledge in physics. The result that mathematical reasoning 
is required to pass six of the eight tests support the assumption that students’ ability to reason 
mathematically affects their success in solving physics tasks. The result shows that students’ ability to 
reason mathematically is an integral part of their knowledge in physics. This in turn likely influences 
how students study and prepare themselves for tests in physics. Further support for the assumption 
is that students not solving tasks requiring CR will not likely attain a higher grade than G. It is well 
known that a focus on IR can explain some of the learning difficulties that students have in 
mathematics (see for example Lithner, 2008). The results above show that a focus on IR when 
learning physics in upper secondary school will make it hard for the students to do well on the 
physics tests. A reasonable conclusion is that focusing on IR can give students learning difficulties in 
physics, as it does in mathematics. 

  



  

76 
 

References 
Baroody, A. J., Feil, Y. & Johnson, A. R. (2007). An Alternative Reconceptualization of Procedural and 

Conceptual Knowledge. Journal for Research in Mathematics Education, 38(2), 115-131.  
Stable URL: http://www.jstor.org/stable/30034952 

 
Basson, I. (2002). Physics and mathematics as interrelated fields of thought development using 

acceleration as an example. International Journal of Mathematical Education in Science and 
Technology, 33(5), 679-690. 
DOI: 10.1080/00207390210146023 

 
Bing, T. (2008). An epistemic framing analysis of upper level physics students' use of mathematics 

(Doctoral dissertation). University of Maryland. Retrieved 2010-02-10 from 
http://www.physics.umd.edu/perg/dissertations/Bing/ 

 
Boesen, J., Lithner, J. & Palm, T. (2010). The relation between types of assessment tasks and the 

mathematical reasoning student use. Educational studies in mathematics, 75 (1), 89-105. 
 DOI: 10.1007/s10649-010-9242-9 
 
diSessa, A. (1993). Towards an epistemology of physics. Cognition and Instruction, 10 (2-3), 105-225.  

DOI:10.1080/07370008.1985.9649008 

Doorman, L. M. & Gravemeijer K. P. E. (2009).  Emergent modeling: discrete graphs to support the 
understanding of change and velocity. ZDM – The International Journal on Mathematics 
Education, 41, 199-211. 
DOI 10.1007/s11858-008-0130-z 

 
Fidalgo, A. M. & Madeira, J. M. (2008). Generalized Mantel-Haenszel Methods for Differential Item 

Functioning Detection. Educational and Psychological Measurement, 68(6), 940-958.   
DOI: 10.1177/0013164408315265 

 
Gray, E. M. & Tall, D. O. (1994).  Duality, Ambiguity and Flexibility: A Proceptual View of Simple 

Arithmetic. The Journal for Research in Mathematics Education, 26(2), 115-141. 
 Stable URL: http://www.jstor.org/stable/749505 
 
Guilera, G., Gómez-Benito, J. & Hidalgo, M. D. (2009). Scientific production on the Mantel-Haenszel 

procedure as a way of detecting DIF. Psicothema 21(3), 493-498.  
ISSN 0214 - 9915 

 
Holland, P. W. & Thayer, D. T. (1988). Differential item performance and the Mantel Haenszel 

Procedure. In H. Wainer & H. I. Braun (Eds), Test validity (pp. 129-145). Hillsdale, NJ: 
Lawrence Erlbaum Associates. 

 
Johansson, H. (2013a). Mathematical Reasoning Requirements in Swedish National Physics Tests. Pre-

print. Gothenburg. 

http://www.physics.umd.edu/perg/dissertations/Bing/


  

77 
 

Lesh, R., & Zawojewski, J. (2007). Problem Solving and modeling. In F. Lester (Ed.), Second handbook 
of research on mathematics teaching and learning (pp. 763-804). Charlotte, NC: Information 
Age Publishing. 

 
Lithner, J. (2008). A research framework for creative and imitative reasoning. Educational Studies in 

Mathematics, 67(3), 255-276.  
DOI: 10.1007/s10649-007-9104-2 

 
Mannocci, A. (2009). The Mantel-Haenszel procedure. 50 years of the statistical method for 

confunders control. Italian Journal of Public Health, 6(4), 338-340. 
DOI: 10.2427/5765 

 
Mantel, N. & Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective 

studies of disease. Journal of the National Cancer Institute, 22(4), 719-748. 
DOI:10.1093/jnci/22.4.719 

 
McCullagh, P. & Nelder, J. A. (1989). Generalized linear models – 2nd edition. Cambridge: University 

Press. 
 
McDonald, J. H. (2009). Handbook of biological statistics, 2nd edition. University of Delaware, 

Baltimore: Sparky House Publishing 
 
Ministry of Education and Research (2001). Departementsserien (Ds) Ds 2001:48. Samverkande 

styrning: om läroplanerna som styrinstrument. Retrieved 2011- 10- 28 from 
  http://www.regeringen.se/content/1/c4/26/49/601d5449.pdf 
 
Nguyen, N-L. & Meltzer, D. (2003). Initial understanding of vector concepts among students in 

introductory physics courses. American Journal of Physics, 71(6), 630-638.  
DOI: 10.1119/1.1571831 

 
Palm, T., Boesen, J., & Lithner, J. (2011). Mathematical Reasoning Requirements in Upper Secondary 

Level Assessments. Mathematical Thinking and Learning, 13(3), 221-246.  
 DOI: 10.1080/10986065.2011.564994 
 
Ramstedt, K. (1996). Elektriska flickor och mekaniska pojkar. Om gruppskillnader på prov – en 

metodutveckling och en studie av skillnader mellan flickor och pojkar på centrala prov i fysik. 
(Doctoral dissertation). Umeå: UmU Tryckeri. 

 
Redish, E. F. & Gupta, A. (2009). Making Meaning with Math in Physics: A Semantic Analysis. 

Contributed paper presented at GIREP 2009, Leicester, UK, August 20, 2009. Retrieved 2012-
06-25 from 
http://www.physics.umd.edu/perg/talks/redish/GIREP2009/GIREP%20Semantics.pdf 

 
Redish, .E. F. (2003). Teaching Physics. USA: John Wiley & Sons, Inc. 
 

http://www.regeringen.se/content/1/c4/26/49/601d5449.pdf
http://www.physics.umd.edu/perg/talks/redish/GIREP2009/GIREP%20Semantics.pdf


  

78 
 

Rothman, K. J., Greenland, S. & Lash, T. L. (2008). Modern epidemiology 3rd edition. Philadelphia: 
Lippincott Williams & Wilkins.  

 
Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando: Academic Press. 
 
Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and 

sense-making in mathematics. In D. Grouws (Ed.), Handbook for Research on Mathematics 
Teaching and Learning (pp. 334-370). New York: MacMillan. 

 
Sfard, A. (1991). On the dual nature of mathematical conceptions: reflections on process and objects 

as different sides of the same coin. Educational Studies in Mathematics, 22(1), 1-36. 
DOI: 10.1007/BF00302715 
 

Star, J. R. (2005). Reconceptualizing procedural knowledge. Journal for Research in Mathematics 
Education, 36(5), 404-411. 
Stable URL: http://www.jstor.org/stable/30034943  
 

Star, J. R. (2007). Foregrounding procedural knowledge. Journal for Research in Mathematics 
Education, 38(2), 132-135. 
Stable URL: http://www.jstor.org/stable/30034953 
 

Swedish National Agency for Education. (2000a). Kursplan Fysik A. Retrieved 2010-10-12 from 
http://www.Swedish National Agency for 
Education.se/forskola_och_skola/gymnasieutbildning/gymnasieskola_fore_ht_2011/2.3034/
sok_amnen_och_kurser/13845/func/kursplan/id/3053/titleId/FY1201%2520-
%2520Fysik%2520A 

 
Swedish National Agency for Education. (2000b). Kursplan Fysik B. Retrieved 2010-10-12 from 

http://www.Swedish National Agency for 
Education.se/forskola_och_skola/gymnasieutbildning/gymnasieskola_fore_ht_2011/2.3034/
sok_amnen_och_kurser/13845/func/kursplan/id/3054/titleId/FY1202%2520-
%2520Fysik%2520B 

 
Swedish National Agency for Education. (2003). Lusten att lära – Med fokus på matematik: Nationella 

kvalitetsgranskningar 2001–2002. Stockholm: Fritzes. 
 
Swedish National Agency for Education. (2005). Skolverkets Provbank. Hur används den och vad 

tycker användarna? Retrieved 2012-10-21 from 
http://www.skolverket.se/prov-och-bedomning/rapporter-och-film 

 
Swedish National Agency for Education (2009). TIMSS Advanced 2008. Svenska gymnasieelevers 

kunskaper i avancerad matematik och fysik i ett internationellt perspektiv. Stockholm: Fritzes. 
  

http://www.jstor.org/stable/30034943
http://www.jstor.org/stable/30034953
http://www.skolverket.se/forskola_och_skola/gymnasieutbildning/gymnasieskola_fore_ht_2011/2.3034/sok_amnen_och_kurser/13845/func/kursplan/id/3054/titleId/FY1202%2520-%2520Fysik%2520B
http://www.skolverket.se/forskola_och_skola/gymnasieutbildning/gymnasieskola_fore_ht_2011/2.3034/sok_amnen_och_kurser/13845/func/kursplan/id/3054/titleId/FY1202%2520-%2520Fysik%2520B
http://www.skolverket.se/forskola_och_skola/gymnasieutbildning/gymnasieskola_fore_ht_2011/2.3034/sok_amnen_och_kurser/13845/func/kursplan/id/3054/titleId/FY1202%2520-%2520Fysik%2520B
http://www.skolverket.se/forskola_och_skola/gymnasieutbildning/gymnasieskola_fore_ht_2011/2.3034/sok_amnen_och_kurser/13845/func/kursplan/id/3054/titleId/FY1202%2520-%2520Fysik%2520B
http://www.skolverket.se/prov-och-bedomning/rapporter-och-film


  

79 
 

Appendix 
MATLAB code for calculating the normal distributed Mantel-Haenszel tests statistic, ZMH. 

close all    
clear all    
 
numberTeachers=zeros(8,1); 
numberStudents=zeros(8,1); 
antalGrupper=zeros(8); 
Z_MH=zeros(8); 
Z_MHsimpleIR=zeros(8,1); 
Z_MHhardIR=zeros(8,1); 
  
alfaMH=zeros(8); 
chi2_MH=zeros(8); 
p_chi2_MH=zeros(8); 
p_Z_MH=zeros(8); 
  
for m=1:8 

if m==1       
[siffror,text]=xlsread('ResultatFyAvt02_konvTeach2tal.xls'); 
%FyAvt02: "SimpleIR" 1a(1190a)=(:,19) 2/0, 2b(1322b)=(:,22) 2/0; 
%"HardIR" 6(1237)=(:,26) 2/0, 11(1304)=(:,32) 3/0; 
 %GCR 13(1184)=(:,35) 0/2, 16a(1218a)=(:,40+41) 1/1.          
  
%One match for each IR 
IR=[19,19, 22,22,26,26,32,32]; 
GCR=[35,41,35,41,35,41,35,41];  
pIR=[2,2,2,2,2,2,3,3]; %maximum score on IR  
pGCR=[2,1,2,1,2,1,2,1];  %maximum score on CR    

 
elseif m==2 

[siffror,text]=xlsread('ResultatFyAht04_konvTeach2tal.xls'); 
%FyAht04: "SimpleIR" 1(1407)=(:,19) 1/0,  3(1577)=(:,21) 2/0;   
%"HardIR" 8b(1404b)=(:,31) 2/0, 9(1035)=(:,32) 1/0;  
%GCR 7a(1458a)=(:,28) 2/0, 11(1574)=(:,36) 0/2.         
  
%One match for each IR 
IR=[19,19, 21,21,31,31,32,32]; 
GCR=[28,36,28,36,28,36,28,36];   
pIR=[1,1,2,2,2,2,1,1]; %maximum score on IR 
pGCR=[2,2,2,2,2,2,2,2];  %maximum score on CR    

 
elseif m==3   

[siffror,text]=xlsread('ResultatFyAvt05_konvTeach2tal.xls'); 
 
%FyAvt05: "SimpleIR" 3a(1584a)=(:,22) 2/0, 8a(1519a)=(:,29) 1/0;  
%"HardIR" 11(1590)=(:,34+35) 1/2, 12a(1497a)=(:,36) 0/1;  
%GCR 10(1588)=(:,32+33) 1/1, 13(1118)=(:,38) 0/2/¤.         
  
%One match for each IR 
IR=[22,22,29,29,35,35,36,36]; 
GCR=[33,38,33,38,33,38,33,38]; 
pIR=[2,2,1,1,2,2,1,1]; %maximum score on IR 
pGCR=[1,2,1,2,1,2,1,2]; %maximum score on CR 

     
elseif m==4 

[siffror,text]=xlsread('ResultatFyBvt02_konvTeach2tal.xls'); 
%FyBvt02: "SimpleIR" 2(1231)=(:,20) 2/0, 4(836)=(:,22) 2/0; 
%"HardIR" 5(1324)=(:,23) 2/0, 9b(1325b)=(:,31) 0/2;  
%GCR 14(1238)=(:,38+39) 1/3, 15(1227)=(:,40+41) 3/4/¤.         
  
%One match for each IR 
IR=[20,20,22,22,23,23,31,31]; 
GCR=[39,41,39,41,39,41,39,41];  
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pIR=[2,2,2,2,2,2,2,2]; %maximum score on IR 
pGCR=[3,4,3,4,3,4,3,4]; %maximum score on CR 

     
elseif m==5 

[siffror,text]=xlsread('ResultatFyBvt03_konvTeach2tal.xls'); 
%FyBvt03: "SimpleIR" 2(1339)=(:,20) 2/0, 5(1370)=(:,23) 2/0; 
%"HardIR" 13(1043)=(:,36+37) 1/2, 14b(1396b)=(:,39) 0/2;  
%GCR 15(1373)=(:,40) 0/3¤, 16(1345)=(:,41+42) 2/6/¤.         
  
%One match for each IR 
IR=[20,20,23,23,37,37,39,39]; 
GCR=[40,42,40,42,40,42,40,42];  
pIR=[2,2,2,2,2,2,2,2]; %maximum score on IR         
pGCR=[3,6,3,6,3,6,3,6]; %maximum score on CR 
     

elseif m==6 
[siffror,text]=xlsread('ResultatFyBvt05_konvTeach2tal.xls'); 
%FyBvt05: "SimpleIR" 6(262)=(:,25) 2/0, 9a(1529a)=(:,29) 2/0;  
%"HardIR" 11(1580)=(:,33) 0/3, 12c(1581c)=(:,36) 0/2;  
%GCR 7(1440)=(:,26) 0/2 14(1537)=(:,39+40) 1/2.          
  
%One match for each IR 
IR=[25,25,29,29,33,33,36,36]; 
GCR=[26,40,26,40,26,40,26,40];  
pIR=[2,2,2,2,3,3,2,2]; %maximum score on IR         
pGCR=[2,2,2,2,2,2,2,2]; %maximum score on CR 

         
elseif m==7 

[siffror,text]=xlsread('ResultatFyBvt06_konvTeach2tal.xls'); 
%FyBvt06: "SimpleIR" 8a(840a)=(:,26) 2/0, 10b(1678b)=(:,30) 0/2;  
%"HArdIR" 13(1470)=(:,36) 0/3, 14b(1474b)=(:,38) 0/2;  
%GCR 12a(1560a)=(:,33) 0/1 12b(1560b)=(:,34) 0/2.          
  
%One match for each IR 
IR=[26,26,30,30,36,36,38,38]; 
GCR=[33,34,33,34,33,34,33,34];  
pIR=[2,2,2,2,3,3,2,2]; %maximum score on IR         
pGCR=[1,2,1,2,1,2,1,2]; %maximum score on CR 
         

else 
[siffror,text]=xlsread('ResultatFyBvt10_konvTeach2tal.xls'); 
%FyBvt10: "SimpleIR" 3(1642)=(:,21) 2/0, 5(1721)=(:,24) 2/0;  
%"HardIR" 7a(1715a)=(:,26) 1/0, 13(1676)=(:,39+40) 1/3/¤;  
%GCR 9c(1718c)=(:,32) 0/2 10(1724)=(:,33) 0/3.          
  
%One match for each IR 
IR=[26,26,30,30,36,36,38,38];  
GCR=[33,34,33,34,33,34,33,34];  
pIR=[2,2,2,2,3,3,2,2]; %maximum score on IR         
pGCR=[1,2,1,2,1,2,1,2]; %maximum score on CR 

 
end 
for p=1:8 

%Mantel-Haenszel estimate of common odds ratio, alfa_MH, as well as 
%chi2 distributed test statistic and two-sided normal distributed test statistic, Z "=sqrt(chi2)" 
%to decide if alfa_MH is stistical significant different from 1. 
 
t=siffror(1,3); %TeacherID, data sorted so all students with the same teacher is after each other. 
n_11=0; %calculate 2x2 entries and the total sum 
n_10=0; 
n_01=0; 
n_00=0; 
n=0; 
  
alfa_numerator=0; 
alfa_denominator=0; 
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%notation according to McCullagh och Nelder 
U=0; 
var_U=0; 
  
%how many different teachers in the calculation,  
%i.e. how many contingency tables have entries >5. 
count=0;  
 
%number of different teachers for each test 
g=0; 
%number of students for each test 
students=0; 
 
for i=1:length(siffror) 

%sum up for each teacher 
if siffror(i,3)==t 

students=students+1; 
%success on both IR och GCR 
if siffror(i,IR(p))==pIR(p) && siffror(i,GCR(p))==pGCR(p) 

n_11=n_11+1; 
%success on IR but not on GCR  
elseif siffror(i,IR(p))==pIR(p) && siffror(i,GCR(p))==0 

n_10=n_10+1; 
%no success on IR but success on GCR  
elseif siffror(i,IR(p))==0 && siffror(i,GCR(p))==pGCR(p) 

n_01=n_01+1; 
%no success on IR nor GCR  
elseif siffror(i,IR(p))==0 && siffror(i,GCR(p))==0 

n_00=n_00+1; 
end         

else 
g=g+1; 
 
%2x2 contingency table 
obs=[n_11 n_10;n_01 n_00]; 
n=sum(sum(obs)); 
                 
n_rad=sum(obs,2); 
m_kolumn=sum(obs,1);              
                 
%Expected values under the assumption of H_0 
E=zeros(2); 
for j=1:2 

 for k=1:2 
 E(j,k)=sum(obs(j,:))*sum(obs(:,k))/n; 

 end 
end 
%Condition E > 5 
if E(:,:)>=5   

p; 
count=count+1;                     
 
alfa_numerator=alfa_numerator+(n_11*n_00/n); 
alfa_denominator=alfa_denominator+(n_10*n_01/n); 
                     
U=U+(n_11-E(1,1)); 
var_U=var_U + prod(n_rad)*prod(m_kolumn)/(n^3-n^2); 
t=siffror(i,3); 
n_11=0; 
n_10=0; 
n_01=0; 
n_00=0; 
n=0; 
                     
students=students+1; 
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%include data from the first student for the next teacher 
%success on both IR och GCR 
if siffror(i,IR(p))==pIR(p) && siffror(i,GCR(p))==pGCR(p) 

n_11=n_11+1; 
%success on IR but not on GCR  
elseif siffror(i,IR(p))==pIR(p) && siffror(i,GCR(p))==0 

n_10=n_10+1; 
%no success on IR but success on GCR                     
elseif siffror(i,IR(p))==0 && siffror(i,GCR(p))==pGCR(p) 

n_01=n_01+1; 
%no success on IR nor GCR 
elseif siffror(i,IR(p))==0 && siffror(i,GCR(p))==0 

n_00=n_00+1; 
end 

else 
t=siffror(i,3); 
students=students+1; 
%include data from the first student for the next teacher 
%success on both IR och GCR 
if siffror(i,IR(p))==pIR(p) && siffror(i,GCR(p))==pGCR(p) 

n_11=n_11+1; 
%success on IR but not on GCR  
elseif siffror(i,IR(p))==pIR(p) && siffror(i,GCR(p))==0 

n_10=n_10+1; 
%no success on IR but success on GCR                     
elseif siffror(i,IR(p))==0 && siffror(i,GCR(p))==pGCR(p) 

n_01=n_01+1; 
%no success on IR nor GCR 
elseif siffror(i,IR(p))==0 && siffror(i,GCR(p))==0 

n_00=n_00+1; 
end 

end 
end 

end 
%How many teachers fulfil the condition E > = 5 for each mathing in each test 
 antalGrupper(m,p)=count; 
            
%total number of teacher for each test 
numberTeachers(m)=g; 
         
%totalt number of students for each test 
numberStudents(m)=students; 
             
%weighted odds-ratio 
alfaMH(m,p)=alfa_numerator/alfa_denominator; 
 
%MantelHaenszel Chi2-statistic with ½ = Yates correction for continuity  
chi2_MH(m,p)=(abs(U)-1/2)^2/var_U; 
    
%MantelHaenszel Z-statistic with ½ = Yates correction for continuity 
sigma_U=sqrt(var_U); 
Z_MH(m,p)=(U-1/2)/sigma_U; 

end 
% 95% limits for chi2-distribution with 1 degree of freedom, 2x2-tables 
limit_95chi2=chi2inv(0.95,1); 
95% limits for normal distribution with mean 0 and standard deviation 1. 
limit_95_Z=norminv([0.025, 0.975],0,1); 

end 
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