
  

2015. In Beswick, K.., Muir, T., & Wells, J. (Eds.). Proceedings of 39
th

 Psychology of 
Mathematics Education conference, Vol. 3, pp. 121-128. Hobart, Australia: PME.  3-121 

RELATION BETWEEN MATHEMATICAL REASONING ABILITY 

AND NATIONAL FORMAL DEMANDS IN PHYSICS COURSES 

Helena Johansson 

University of Gothenburg 

 

It is widely accepted that mathematical competence is of great importance when 

learning physics. This paper focuses on one aspects of mathematical competence, 

namely mathematical reasoning, and how this competency influences students‘ 

success in physics. Mathematical reasoning required to solve tasks in physics tests, 

within a national testing system, is separated into imitative and creative 

mathematical reasoning. The results show that students lacking the ability to reason 

creatively are more likely not to do well on national physics test, thus not fully 

mastering the physics curricula. It is further discussed how the high demands of 

creative mathematical reasoning in physics tests stand in contrast to what is known 

about the educational practices in mathematics and physics in upper secondary 

school.  

INTRODUCTION 

Many scholars discuss the importance of understanding how mathematics is used in 

physics and how students‘ mathematical knowledge affects their learning of physics, 

e.g., Basson (2002) who mentions how difficulties in learning physics not only stem 

from the complexity of the subject but also from insufficient mathematical 

knowledge, Bing (2008), in his discussion of the importance of learning the language 

of mathematics when studying physics, as well as Redish and Gupta (2009), who 

emphasise the need to understand the cognitive thinking of experts in order to teach 

mathematics for physics more effectively to students.  

According to the Swedish National Agency for Education (2009a) a common activity 

in physics classes is students using physics laws and formulas to solve routine tasks. 

The most common homework is to read in the textbook and/or to solve various tasks 

posed in the book, and sometimes to memorise formulas and procedures (ibid.). 

Similar results are described by Doorman and Gravemeijer (2009), who notice that 

most of the attention in both physics and mathematics in school is paid to the 

manipulations of formulas instead of focusing on why the formulas work. Redish 

(2003) states that practice, in the meaning that students just solve various tasks, is 

necessary but not enough to develop a deeper understanding of the underlying 

physics concepts. Students must learn both how to use the knowledge and when to 

use it. 

The impact of mathematical reasoning on mathematical learning has been discussed 

and studied from multiple perspectives. Schoenfeld (1992), for example, points out 

that a focus on rote mechanical skills leads to poor performance in problem solving in 

contrast to the performance of mathematically powerful students. Lesh and 
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Zawojeskij (2007) discuss how emphasising low-level skills does not give the 

students the abilities needed for mathematical modelling or problem solving, neither 

to draw upon interdisciplinary knowledge. Students lacking the ability to use creative 

mathematical reasoning thus get stuck when confronted with novel situations, and 

this negatively influences their possibilities to learn (Lithner, 2008). Since 

mathematics is a natural part of physics, it is reasonable to assume that the ability to 

use mathematical reasoning is an integral part of the physics knowledge students are 

assumed to achieve in physics courses.  

FRAMEWORK 

During studies on how students engage in various kinds of mathematical activities, 

Lithner (2008) developed a framework for characterising students‘ mathematical 

reasoning. The framework distinguishes between creative mathematical founded 

reasoning (CR) and imitative reasoning (IR). To be regarded as CR the following 

criteria should be fulfilled: i. Novelty. A new reasoning sequence is created or a 

forgotten one is recreated. ii. Plausibility. There are arguments supporting the 

strategy choice and/or strategy implementation motivating why the conclusions are 

true or plausible. iii. Mathematical foundation. The arguments made during the 

reasoning process are anchored in the intrinsic mathematical properties of the 

components involved in the reasoning (Lithner, 2008, p. 266).  

Reasoning categorised as IR fulfils: i. The strategy choice is founded on recalling a 

complete answer. ii. The strategy implementation consists only of writing it down 

(Lithner, 2008, p. 258), or i. The strategy choice is to recall a solution algorithm. The 

predicted argumentation may be of different kind, but there is no need to create a new 

solution. ii. The remaining parts of the strategy implementation are trivial for the 

reasoned, only a careless mistake can lead to failure (ibid. p. 259).  

In the application of the framework for the analyses described in this paper, an 

additional category, defined in Johansson (2103), is used. This category consists of 

those tasks that can be solved by only using physics knowledge; and this category is 

called non-mathematical reasoning (NMR). Physics knowledge is here referred to as 

relations and facts that are discussed in the physics courses and not in the courses for 

mathematics, according to the syllabuses and textbooks, e.g. that angle of incidence 

equals angle of reflection. 

RESEARCH QUESTIONS 

There is a significant amount of educational research on the relation between the 

school subjects of mathematics and physics that support the necessity of different 

mathematical competencies when learning physics. However, no studies on what type 

of mathematical reasoning is required of physics students were found. As an 

approach to the assumption that students‘ ability to reason mathematically affects 

how they master the physics curricula, this study use a previous analysis (Johansson, 

2013) of the mathematical reasoning requirements to solve tasks in physics tests 

together with actual students‘ results on the same tests.  
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The Swedish national physics tests are the government‘s way of concretising the 

physics curricula. Thus, the requirements of mathematical reasoning to solve tasks in 

national physics tests should capture the mathematical reasoning that is required to 

master or fully master the curricula. The goals and the subject descriptions in the 

Swedish curricula of what it means to know physics are quite rich and are highly in 

accordance with the content and cognitive domains in the TIMSS Assessment 

framework (Garden et al. 2006; Swedish National Agency for Education, 2009b). 

This alignment with TIMSS suggests that the results from this study are relevant to 

an international context.  

By addressing the questions: Is it possible for a student to get one of the higher 

grades, Pass with distinction and Pass with special distinction, without using CR?, 

and If it is possible, how common is it?, this study examines how the universal 

requirement of a mathematical reasoning competency to master the physics curricula 

relates to a specific assessment system‘s formal demands, in this case Sweden‘s. 

METHOD 

The empirical data consisted of student data from eight randomly chosen Swedish 

national physics tests for upper secondary school, and the tasks in the tests. There are 

mainly two different physics courses in the Swedish upper secondary school. Physics 

A that is compulsory for all natural science and technology students and Physics B 

that is an optional continuation. The tasks had previously been categorised according 

to mathematical reasoning requirements (Johansson, 2013), and together the tests 

comprised 169 tasks. The tests, which are classified to not authorised users, and the 

student data were used by permission from Department of Applied Educational 

Science at Umeå University, the department in charge of the National Test Bank in 

Physics. Student data come as excel sheets, one sheet for each test. The sheets 

contain information about individual students‘ grade, whereas the grade is one of the 

following: Not Pass (IG), Pass (G), Pass with distinction (VG), and Pass with special 

distinction (MVG). Further information in the sheets are individual student‘s scores 

on each task separated in G- and VG-scores, and their total score on the tests. No 

names of the students are present in the sheets, instead each student has got an ID-

number. The IDs are unidentifiable for anyone outside the Department of Applied 

Educational Science at Umeå University, so data could be considered anonymous. 

The number of student data for each test varies from 996 to 3666.  

For each test there are certain score levels the students need to attain to get a 

certain grade. To get the grade MVG, students need to fulfil certain quality 

aspects besides the particular score level. To decide if it is possible for a 

student to get one of the higher grades, VG or MVG, without using any kind 

of CR, each test was first analysed separately. This analysis consisted in 

comparing the score level for each grade with the maximum scores that are 

possible to obtain, given that the student only has solved (partly or fully) IR- 

and/or NMR- tasks. The available student data did not give any information 
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about which of the qualitative aspects required for MVG the students have 

fulfilled, but the data sheets included students grades, thus MVG could be 

included in the analyses as one of the higher grades. After analysing if it is 

possible at all to receive the grades VG or MVG without solving any CR-

tasks, students‘ actual results on the categorised tasks for those particular 

tests are summed up. The proportion of students who only got scores from 

IR- and/or NMR-tasks is then graphed with respect to the different grades. 

RESULTS 

Table 1 shows how the scores, possible to obtain on each of the eight tests that were 

analysed, are distributed among the reasoning categories IR and NMR. The table also 

includes the levels for the grades G, VG and MVG. The notation for the scores 

follows the convention G/VG.  

Test Max 

score 

(G/VG) 

Min 

required 

score for G 

Min required 

score for VG 

Min required 

score for MVG 

Max 

scores for 

IR-tasks 

Max scores 

for NMR-

tasks 

Max score 

possible without 

CR-tasks 

Physics A 

May 02 

43 

(26/17) 

12 25 (with at least 

6 VG scores) 

25 (with at least 

12 VG scores) 

12/0 3/3 18 (with 3 VG) 

Physics A 

Dec 04 

40 

(23/17) 

12 24 (with at least 

5 VG scores) 

24 (with at least 

12 VG scores) 

14/3 3/3 23 (with 6 VG) 

Physics A 

May 05 

38 

(22/16) 

12 24 (with at least 

6 VG scores) 

24 (with at least 

12 VG scores) 

12/3 8/4 27 (with 7 VG) 

Physics B 

May 02 

48 

(23/25) 

12 27 (with at least 

7 VG scores) 

27 (with at least 

13 VG scores) 

11/4 2/0 17 (with 4 VG) 

Physics B 

May 03 

43 

(23/20) 

12 25 (with at least 

6 VG scores) 

25 (with at least 

13 VG scores) 

12/8 5/1 26 (with 9 VG) 

Physics B 

May 05 

44 

(22/22) 

12 25 (with at least 

6 VG scores) 

25 (with at least 

12 VG scores) 

8/5 7/2 22 (with 7 VG) 

Physics B 

Feb 06 

43 

(22/21) 

12 25 (with at least 

7 VG scores) 

25 (with at least 

13 VG scores) 

11/7 9/9 36 (with 16 VG) 

 

Physics B 

April 10 

44 

(24/20) 

12 25 (with at least 

6 VG scores) 

25 (with at least 

12 VG scores) 

9/4 4/1 18 (with 5 VG) 

Table 1: Analysis of the distribution of G- and VG-scores among IR- and NMR-

tasks. 

For example, for the Physics A test from May 02 is the maximum score 43, and of 

these scores are 26 G-scores and 17 VG-scores. To pass this particular test a student 

has to have at least 12 scores, it does not matter if these scores are G- or VG-scores. 

To get the higher grade VG, a student has to have at least 25 scores and at least 6 of 

these scores have to be VG-scores. To get the highest grade, MVG, a student has to 

have at least 25 scores and at least 12 scores of these have to be VG-scores. As 

mentioned above, students also have to fulfil some additional quality aspects to 

achieve the grade MVG. Further, for the Physics A test from May 02, if a student 

only solves all tasks categorised as IR, he/she can obtain at most 12 G scores. If a 

student only solves all tasks categorised as NMR, he/she can obtain 3 G-scores and 3 

VG-scores. Solving all IR- and NMR-tasks thus result in total 18 scores of which 3 



 Johansson 

PME39 — 2015 3-125 

are VG-scores. The scores for the rest of the analysed tests are presented in the same 

way. 

In three of the eight tests (highlighted in Table 1) it is possible to get the grade VG by 

solving tasks not requiring any CR. In one of these tests, Physics B from February 

2006, it is with respect to score level possible to obtain the grade MVG by solving 

only IR- and NMR-tasks. The analysis does not reveal anything about whether the 

requirements of the qualitative aspects for MVG are possible to fulfil by solving only 

these kinds of tasks. 

Figure 1 illustrates the proportion of students on the three highlighted tests in Table 1 

who only had solved IR- and/or NMR-tasks graphed with respect to their grades on 

the tests.  

 

Figure 1: Proportion of students who only solved IR- and/or NMR-tasks with respect 

to the different grades. 

It turned out that it is not frequently occurring that a student gets a higher grade than 

G by only solving these kinds of tasks. In the test for Physics A from 2005, only 0.17 

% of the students got a higher grade; and in the Physics B test from 2003 none of the 

students got higher grades than G. The Physics B test from 2006 seems to be an 

exception though, since 25% of the students taking this test got a VG and 17% got a 

MVG. The analysis of how the scores are distributed among the reasoning categories 

for the different tests shows that the Physics B test from 2006 contains a lot more 

scores in the NMR category than any of the other tests (see Table 1). The total scores 

possible to obtain by only solving NMR-tasks are 18; nine of these are VG-scores, 

which is more than enough to fulfil the requirement for a VG (minimum 7 VG).  

DISCUSSION 

The analysis shows that it is possible to receive a higher grade than G by using only 

IR and NMR on three out of eight tests. When this result is compared with student 



Johansson 

3-126 PME39 — 2015 

data it is revealed that not using any CR, still receiving a higher grade, only occurs on 

one of the eight tests. This particular test, for which this occurs, is slightly different 

compared to the other tests with respect to how the scores are distributed among the 

reasoning categories (see Table 1). Further analysis of the test shows that tasks where 

it is possible to show the qualitative aspects required for the highest grade can be 

solved without using any mathematical reasoning i.e. these tasks are in the NMR 

category. This explains the higher frequency of students receiving the higher grades 

by using only IR and NMR, compared to the other tests.  

The analysis of the tests furthermore shows that it is impossible to pass six of the 

eight tests without solving any tasks requiring mathematical reasoning. As seen in 

Table 1 it is only on the tests Physics A, May 05 and Physics B, Feb 06 a student can 

get at least the score 12, which is required to pass a test, by only solving NMR-tasks. 

These results strengthen the outcome from the author‘s previous study, which are that 

the ability to reason mathematically is an important competency and an integral part 

when taking physics tests (Johansson, 2013).  

Mathematical reasoning is defined as a process to reach conclusions when solving 

tasks (Lithner, 2008). When students have the ability to use creative mathematical 

founded reasoning, they know how to argue and justify their conclusions and they 

can draw on previous knowledge. The result in the present study shows that CR is 

required to succeed on most of the physics tests. The alignment between the TIMSS 

framework and the Swedish policy documents suggests that this is a universal 

demand on upper secondary physics students. Viewing the physics tests from the 

National Test bank as an extension of the national curricula, one can assume that 

students‘ results on the tests are a measure of their knowledge in physics. It is well 

known that a focus on IR can explain some of the learning difficulties that students 

have in mathematics. The results above show that a focus on IR when studying 

physics in upper secondary school will make it hard for the students to do well on the 

physics tests, thus fully mastering the physics curricula. Therefore, a reasonable 

conclusion is that focusing on IR can hinder students‘ development of knowledge in 

physics, similar to results found about mathematics, and a creative mathematical 

reasoning competency can be regarded decisive.  

The argumentative side of mathematics, which is a reasoning based on intrinsic 

properties of the components involved in the task-solving process, seems to be an 

inseparable part of mastering physics. All students should have the same possibilities 

to achieve the goals in the physics curricula. Therefore, they ought to be given the 

opportunity in school to develop and practice this creative mathematical reasoning 

competency that is required. As mentioned in the introduction, it is common in the 

physics classes that students solve routine tasks and focus on manipulations on 

formulas instead of focusing on the conceptual understanding of the underlying 

principles (Doorman & Gravemeijer, 2009; Swedish National Agency for Education, 

2009a). Although it is the physics perspective that is discussed in the above studies, it 

is reasonable to assume that if there is more focus on physics procedures than on the 
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understanding of physics concepts, there is also little focus on creative mathematical 

reasoning.  

It is not only the physics classes that might provide students the opportunity to 

develop a mathematical reasoning competency, this competency is of course relevant 

also in the mathematics classes. According to studies about the learning environment 

in mathematics classes, the focus is on algorithmic procedures and the environment 

does not provide extensive opportunities to learn and practice different kinds of 

reasoning (e.g., Boesen, Lithner & Palm, 2010). During observations of classroom 

activities it was shown that opportunities to develop procedural competency was 

present in episodes corresponding to 79% of the observed time; compared to episodes 

involving opportunities to develop mathematical reasoning competency, which were 

present in 32% of the observed time (Boesen et al., 2014). Also tests have an indirect 

role for students learning, both as formative, when students get feedback on their 

solutions, and as summative, when the character of the tasks give students indications 

of what competences that are sufficient for handling mathematical tasks. Analyses of 

teacher-made mathematics tests have shown that these focused largely on imitative 

reasoning, in contrast to the national mathematics tests, which had a large proportion 

of tasks requiring creative mathematical reasoning (Palm, Boesen, & Lithner, 2011). 

Altogether, the above discussion shows that students are provided limited 

opportunities to develop the creative mathematical reasoning competency that is 

formally required to master the physics curricula. The importance of the relation 

between mathematics and physics has been known for a long time. The result from 

the present study, that the ability to creatively mathematically argue and reason is 

decisive in order to fully master the physics curricula, should have implications on 

how the education is organised and carried out. 
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